{"title":"Use of Downhole Oil-Water Separation System in Horizontal Wells","authors":"Ahmed Alshmakhy, A. Abdelkerim, N. Braaten","doi":"10.2118/205960-ms","DOIUrl":null,"url":null,"abstract":"\n This paper will focus on a new system for separation of water in downhole horizontal wells. The advantages with the system are related to the fact that the water produced from the well is not lifted to the surface, but re-injected into suitable parts of the reservoir, either for pressure support or for diposal.\n The method of water separation and re-injection has been evaluated for oil producing fields. The paper presents details of the technical solutions and analysis done related to the financial analysis/payback. The mechanical design is basically a main pipe section of a few meters of length, with a special geometry utilizing gravity-based separation.\n A technical and economic analysis of a downhole processing plant (DPP) using a horizontally installed water/oil separator has been performed. The Improved Oil Recovery (IOR)part has been analysed with a relevant flow simulation tool. Based on the given reservoir depth/pressure, flow rate, viscosity/density and water cut, the simulations show that a significant improved production rate/income can be achieved by extracting the produced water downhole and performing re-injection into the producing reservoir to maintain reservoir pressure. In addition, the expected lifetime of the well is increased by several years. The conclusion is that the earlier the separator is installed, the greater the total well income. In addition, details regarding not only multi-lateral wells through level 5 junctions but also production string with separator and valve system has been evaluated and is concluded to be feasible for the well in question\n The removal of water downhole has several advantages, for example the removal of the water column up to the surface will reduce the reservoir back pressure and will improve recovery /production rates. In addition, not lifting the water will reduce energy consumption/CO2 footprint, and removal of water will reduce surface processing and possible re-injection and chemical treatment cost. In general, water separation downhole is advantageous, due to the higher pressure.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205960-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper will focus on a new system for separation of water in downhole horizontal wells. The advantages with the system are related to the fact that the water produced from the well is not lifted to the surface, but re-injected into suitable parts of the reservoir, either for pressure support or for diposal.
The method of water separation and re-injection has been evaluated for oil producing fields. The paper presents details of the technical solutions and analysis done related to the financial analysis/payback. The mechanical design is basically a main pipe section of a few meters of length, with a special geometry utilizing gravity-based separation.
A technical and economic analysis of a downhole processing plant (DPP) using a horizontally installed water/oil separator has been performed. The Improved Oil Recovery (IOR)part has been analysed with a relevant flow simulation tool. Based on the given reservoir depth/pressure, flow rate, viscosity/density and water cut, the simulations show that a significant improved production rate/income can be achieved by extracting the produced water downhole and performing re-injection into the producing reservoir to maintain reservoir pressure. In addition, the expected lifetime of the well is increased by several years. The conclusion is that the earlier the separator is installed, the greater the total well income. In addition, details regarding not only multi-lateral wells through level 5 junctions but also production string with separator and valve system has been evaluated and is concluded to be feasible for the well in question
The removal of water downhole has several advantages, for example the removal of the water column up to the surface will reduce the reservoir back pressure and will improve recovery /production rates. In addition, not lifting the water will reduce energy consumption/CO2 footprint, and removal of water will reduce surface processing and possible re-injection and chemical treatment cost. In general, water separation downhole is advantageous, due to the higher pressure.