Capacity Optimization of EV Charging Networks: A Greedy Algorithmic Approach

R. Jovanovic, S. Bayhan, I. S. Bayram
{"title":"Capacity Optimization of EV Charging Networks: A Greedy Algorithmic Approach","authors":"R. Jovanovic, S. Bayhan, I. S. Bayram","doi":"10.1109/SGRE53517.2022.9774066","DOIUrl":null,"url":null,"abstract":"In the recent years, there has been a steady increase in the use of electrical vehicles (EV). Their further adoption is becoming more dependent on the quality of service provided by the charging infrastructure. In this paper, the focus is on optimizing the charging infrastructure from the point of minimizing the service drop modelled using the standard M/M/c/c loss queue. To be exact, a mathematical model is proposed for the problem of optimizing capacities at individual stations in an EV charging network. The novelty is in considering the relation of capacity of a charging station to its arrival rate. Due to the non-linearity of the problem, a greedy algorithm combined with a local search is developed for finding near optimal configurations of the system. The new model is evaluated using real-world data for population density and existing charging infrastructure for metropolitan areas. The conducted computational experiments, show that charging networks optimized using the proposed model, significantly better reflect the state-on-the-ground than standardly used models, while maintaining a low service drop rate.","PeriodicalId":64562,"journal":{"name":"智能电网与可再生能源(英文)","volume":"89 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能电网与可再生能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/SGRE53517.2022.9774066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the recent years, there has been a steady increase in the use of electrical vehicles (EV). Their further adoption is becoming more dependent on the quality of service provided by the charging infrastructure. In this paper, the focus is on optimizing the charging infrastructure from the point of minimizing the service drop modelled using the standard M/M/c/c loss queue. To be exact, a mathematical model is proposed for the problem of optimizing capacities at individual stations in an EV charging network. The novelty is in considering the relation of capacity of a charging station to its arrival rate. Due to the non-linearity of the problem, a greedy algorithm combined with a local search is developed for finding near optimal configurations of the system. The new model is evaluated using real-world data for population density and existing charging infrastructure for metropolitan areas. The conducted computational experiments, show that charging networks optimized using the proposed model, significantly better reflect the state-on-the-ground than standardly used models, while maintaining a low service drop rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电动汽车充电网络容量优化:一种贪婪算法
近年来,电动汽车(EV)的使用稳步增加。它们的进一步采用越来越依赖于收费基础设施提供的服务质量。本文的重点是从最小化服务丢失的角度出发,利用标准的M/M/c/c损耗队列模型对充电基础设施进行优化。针对电动汽车充电网络中单个充电站容量优化问题,提出了一个数学模型。其新颖之处在于考虑充电站容量与充电站到达率的关系。由于问题的非线性,提出了一种贪心算法和局部搜索相结合的方法来寻找系统的近最优配置。新模型使用真实世界的人口密度数据和大都市地区现有的充电基础设施进行评估。计算实验表明,与标准模型相比,采用该模型优化后的充电网络在保持较低服务掉案率的同时,能更好地反映充电网络的实际状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
307
期刊最新文献
Experimental Investigations of the Effects of Secondary Air Injection on Gaseous Emission Profiles (NOx, NO, NO2, CO) and Hydrocarbons (CxHx) in Cookstoves Using Charcoal from Eucalyptus glandis Microgrid Optimal Scheduling Carbon and Water Footprint Evaluation of 120Wp Rural Household Photovoltaic System: Case Study Performance of the Boost Chopper, Comparative Study between PI Control and Neural Control to Regulate Its Output Voltage An Energy Production System Powered by Solar Heat with Biogas Dry Reforming Reactor and Solid Oxide Fuel Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1