Fault detection in wastewater treatment plants using distributed PCA methods

A. Sánchez-Fernández, M. J. Fuente, G. Palmero
{"title":"Fault detection in wastewater treatment plants using distributed PCA methods","authors":"A. Sánchez-Fernández, M. J. Fuente, G. Palmero","doi":"10.1109/ETFA.2015.7301504","DOIUrl":null,"url":null,"abstract":"This paper proposes a distributed fault detection and diagnosis method based on Principal Component Analysis (PCA) in a whole plant monitoring scheme. The method is based on the decomposition of the plant into multiple blocks using plant topology. A local PCA based fault detection method is applied in each block and the results are sent to the central node to fuse the information and to detect and diagnose faults in the global plant. This method is compared with the centralized PCA method and some distributed principal component analysis (DPCA) methods in a wastewater treatment plant (WWTP). The objective is to check which of the distributed methods implemented is the best one in terms of detecting faults and minimizing the communication cost between the blocks. Empirical results on the WWTP show that the DPCA method based on local models has very good results.","PeriodicalId":6862,"journal":{"name":"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)","volume":"9 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2015.7301504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper proposes a distributed fault detection and diagnosis method based on Principal Component Analysis (PCA) in a whole plant monitoring scheme. The method is based on the decomposition of the plant into multiple blocks using plant topology. A local PCA based fault detection method is applied in each block and the results are sent to the central node to fuse the information and to detect and diagnose faults in the global plant. This method is compared with the centralized PCA method and some distributed principal component analysis (DPCA) methods in a wastewater treatment plant (WWTP). The objective is to check which of the distributed methods implemented is the best one in terms of detecting faults and minimizing the communication cost between the blocks. Empirical results on the WWTP show that the DPCA method based on local models has very good results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分布式主成分分析方法的污水处理厂故障检测
提出了一种基于主成分分析(PCA)的全厂分布式故障检测与诊断方法。该方法基于使用植物拓扑将植物分解为多个块。在每个块中应用基于局部主成分分析的故障检测方法,并将结果发送到中心节点进行信息融合,对全局设备进行故障检测和诊断。将该方法与集中式主成分分析方法和一些分布式主成分分析方法在某污水处理厂进行了比较。目标是检查哪一种实现的分布式方法在检测故障和最小化块之间的通信开销方面是最好的。污水处理厂的实证结果表明,基于局部模型的DPCA方法具有很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schedulability using native non-preemptive groups on an AUTOSAR/OSEK platform Towards an integrated use of simulation within the life-cycle of a process plant Engineering and operation made easy - a semantics and service oriented approach to building automation Control application for Internet of Things energy meter — A key part of integrated building energy management system A hybrid-based error detection technique for PLC-based Industrial Control Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1