Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits

Paul W. Wilson, F. Zanasi
{"title":"Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits","authors":"Paul W. Wilson, F. Zanasi","doi":"10.4204/EPTCS.333.17","DOIUrl":null,"url":null,"abstract":"We introduce Reverse Derivative Ascent: a categorical analogue of gradient based methods for machine learning. Our algorithm is defined at the level of so-called reverse differential categories. It can be used to learn the parameters of models which are expressed as morphisms of such categories. Our motivating example is boolean circuits: we show how our algorithm can be applied to such circuits by using the theory of reverse differential categories. Note our methodology allows us to learn the parameters of boolean circuits directly, in contrast to existing binarised neural network approaches. Moreover, we demonstrate its empirical value by giving experimental results on benchmark machine learning datasets.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":"50 1","pages":"247-260"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.333.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We introduce Reverse Derivative Ascent: a categorical analogue of gradient based methods for machine learning. Our algorithm is defined at the level of so-called reverse differential categories. It can be used to learn the parameters of models which are expressed as morphisms of such categories. Our motivating example is boolean circuits: we show how our algorithm can be applied to such circuits by using the theory of reverse differential categories. Note our methodology allows us to learn the parameters of boolean circuits directly, in contrast to existing binarised neural network approaches. Moreover, we demonstrate its empirical value by giving experimental results on benchmark machine learning datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逆导数上升:学习布尔电路的分类方法
我们介绍逆导数上升:一种基于梯度的机器学习方法的分类模拟。我们的算法是在所谓的反向微分范畴的层次上定义的。它可以用来学习用这类范畴的态射表示的模型参数。我们的激励例子是布尔电路:我们展示了我们的算法如何通过使用反向微分范畴理论应用于这样的电路。注意,与现有的二值化神经网络方法相比,我们的方法允许我们直接学习布尔电路的参数。此外,我们通过在基准机器学习数据集上给出实验结果来证明其经验价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Canonical Gradings of Monads Proceedings Fifth International Conference on Applied Category Theory, ACT 2022, Glasgow, United Kingdom, 18-22 July 2022 Polynomial Life: the Structure of Adaptive Systems Grounding Game Semantics in Categorical Algebra Jacobians and Gradients for Cartesian Differential Categories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1