{"title":"Photoproduction of hydrogen by adapted cells of Chlorella pyrenoidosa","authors":"Eiichi Kojima, Yuichi Yamaguchi","doi":"10.1016/0385-6380(88)90124-0","DOIUrl":null,"url":null,"abstract":"<div><p>Photoproduction of hydrogen gas by the green alga <em>Chlorella pyrenoidosa</em> was studied in a large scale culture of 2.1. Hydrogen was produced by adding sodium hydrosulfite directly to an algal suspension after anaerobiosis in darkness for activation of hydrogenase. The hydrogen production rate showed a characteristic course of an initial burst of gas then steady production, and this course appeared most clearly at cell concentrations around 0.6–0.7 kg/m<sup>3</sup>. In the final third phase, the hydrogen production rate gradually decreased until evolution ceased. The steady hydrogen evolution was inhibited 75% by a herbicide, DCMU, which blocks electron flow through photosystem II, indicating that the electron donor for hydrogen production was mainly water. The average light intensity within the culture vessel was measured with a diffusing sphere photoprobe. The rate of hydrogen evolution increased hyperbolically with the average light intensity. The duration of hydrogen photoproduction was shorter at higher light intensity due to the inhibition of hydrogenase by concomitantly released oxygen. The duration was shorter also at higher concentrations of algal suspension. It was foudd that the optimum concentration of algae, about 0.7 kg/m<sup>3</sup> in this system, must be selected to maximize the yield of hydrogen.</p></div>","PeriodicalId":15702,"journal":{"name":"Journal of Fermentation Technology","volume":"66 1","pages":"Pages 19-25"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0385-6380(88)90124-0","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fermentation Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0385638088901240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Photoproduction of hydrogen gas by the green alga Chlorella pyrenoidosa was studied in a large scale culture of 2.1. Hydrogen was produced by adding sodium hydrosulfite directly to an algal suspension after anaerobiosis in darkness for activation of hydrogenase. The hydrogen production rate showed a characteristic course of an initial burst of gas then steady production, and this course appeared most clearly at cell concentrations around 0.6–0.7 kg/m3. In the final third phase, the hydrogen production rate gradually decreased until evolution ceased. The steady hydrogen evolution was inhibited 75% by a herbicide, DCMU, which blocks electron flow through photosystem II, indicating that the electron donor for hydrogen production was mainly water. The average light intensity within the culture vessel was measured with a diffusing sphere photoprobe. The rate of hydrogen evolution increased hyperbolically with the average light intensity. The duration of hydrogen photoproduction was shorter at higher light intensity due to the inhibition of hydrogenase by concomitantly released oxygen. The duration was shorter also at higher concentrations of algal suspension. It was foudd that the optimum concentration of algae, about 0.7 kg/m3 in this system, must be selected to maximize the yield of hydrogen.