Boosting performance of triboelectric nanogenerator via polydimethylsiloxane modified with perovskite BiFeO3 nanoparticles

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Technology Pub Date : 2022-10-26 DOI:10.1080/10667857.2022.2138804
Kun Zhao, Xueting Zhang, Haoran Lv, Wanru Sun, Ming Zhong, Maocheng Liu, Hongjie Liu, Ding Zhang
{"title":"Boosting performance of triboelectric nanogenerator via polydimethylsiloxane modified with perovskite BiFeO3 nanoparticles","authors":"Kun Zhao, Xueting Zhang, Haoran Lv, Wanru Sun, Ming Zhong, Maocheng Liu, Hongjie Liu, Ding Zhang","doi":"10.1080/10667857.2022.2138804","DOIUrl":null,"url":null,"abstract":"ABSTRACT Triboelectric nanogenerators (TENGs) have great potential applications in the field of microelectronics. However, the low surface charge density of the triboelectric layer is one of the key problems greatly limiting its output performance. Herein, we report a high-performance TENG using BiFeO3@polydimethylsiloxane (BFO@PDMS) composite film as a triboelectric layer. The results indicate that doping a small amount of BFO particles can significantly increase the dielectric constant and surface area of the PDMS film, which maximises the surface charge density of the triboelectric layer. With an optimized doping concentration , the dielectric constant of BFO@PDMS composite film is 14.2% higher than that of the pure PDMS film. The BFO@PDMS-based TENG delivers a maximum output voltage and current of 180 V and 30 μA, corresponding to 200% and 500% increases compared with pure PDMS film, respectively, which can drive an electronic watch and light 52 LEDs, indicating potential applications in microelectronic devices.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"27 1","pages":"3212 - 3221"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2022.2138804","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Triboelectric nanogenerators (TENGs) have great potential applications in the field of microelectronics. However, the low surface charge density of the triboelectric layer is one of the key problems greatly limiting its output performance. Herein, we report a high-performance TENG using BiFeO3@polydimethylsiloxane (BFO@PDMS) composite film as a triboelectric layer. The results indicate that doping a small amount of BFO particles can significantly increase the dielectric constant and surface area of the PDMS film, which maximises the surface charge density of the triboelectric layer. With an optimized doping concentration , the dielectric constant of BFO@PDMS composite film is 14.2% higher than that of the pure PDMS film. The BFO@PDMS-based TENG delivers a maximum output voltage and current of 180 V and 30 μA, corresponding to 200% and 500% increases compared with pure PDMS film, respectively, which can drive an electronic watch and light 52 LEDs, indicating potential applications in microelectronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钙钛矿BiFeO3纳米粒子修饰聚二甲基硅氧烷提高摩擦电纳米发电机性能
摩擦纳米发电机(TENGs)在微电子领域具有巨大的应用潜力。摩擦电层表面电荷密度低是制约摩擦电层输出性能的关键问题之一。在此,我们报告了使用BiFeO3@polydimethylsiloxane (BFO@PDMS)复合薄膜作为摩擦电层的高性能TENG。结果表明,少量BFO颗粒的掺杂可以显著提高PDMS膜的介电常数和表面积,使摩擦电层的表面电荷密度达到最大。优化掺杂浓度后,BFO@PDMS复合膜的介电常数比纯PDMS膜的介电常数高14.2%。BFO@PDMS-based TENG的最大输出电压和电流分别为180 V和30 μA,与纯PDMS薄膜相比分别提高了200%和500%,可驱动一块电子表和点亮52个led,在微电子器件中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Technology
Materials Technology 工程技术-材料科学:综合
CiteScore
6.00
自引率
9.70%
发文量
105
审稿时长
8.7 months
期刊介绍: Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.
期刊最新文献
Fabrication and development of biogenic selenium nanoparticles incorporated alginate hydrogel wound care material: a pre-clinical study Biopolymer-coated magnesium-alloy-based multi-functional bio-nanocomposite scaffolds Enhancing anticancer efficacy: xovoltib-loaded chitosan-tripolyphosphate nanoparticles for targeted drug delivery against MCF-7 breast cancer cells One Pot Synthesis, characterization, morphology and optical profilometry properties of La-doped and La–Ag-doped cobalt oxide nanoparticles Supercritical hydrothermal synthesis of ultra-fine Cu powders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1