Impact of virtual machine granularity on cloud computing workloads performance

Ping Wang, Wei Huang, Carlos A. Varela
{"title":"Impact of virtual machine granularity on cloud computing workloads performance","authors":"Ping Wang, Wei Huang, Carlos A. Varela","doi":"10.1109/GRID.2010.5698018","DOIUrl":null,"url":null,"abstract":"This paper studies the impact of VM granularity on workload performance in cloud computing environments. We use HPL as a representative tightly coupled computational workload and a web server providing content to customers as a representative loosely coupled network intensive workload. The performance evaluation demonstrates VM granularity has a significant impact on the performance of the computational workload. On an 8-CPU machine, the performance obtained from utilizing 8VMs is more than 4 times higher than that given by 4 or 16 VMs for HPL of problem size 4096; whereas on two machines with a total of 12 CPUs 24 VMs gives the best performance for HPL of problem sizes from 256 to 1024. Our results also indicate that the effect of VM granularity on the performance of the web system is not critical. The largest standard deviation of the transaction rates obtained from varying VM granularity is merely 2.89 with a mean value of 21.34. These observations suggest that VM malleability strategies where VM granularity is changed dynamically, can be used to improve the performance of tightly coupled computational workloads, whereas VM consolidation for energy savings can be more effectively applied to loosely coupled network intensive workloads.","PeriodicalId":6372,"journal":{"name":"2010 11th IEEE/ACM International Conference on Grid Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th IEEE/ACM International Conference on Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRID.2010.5698018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper studies the impact of VM granularity on workload performance in cloud computing environments. We use HPL as a representative tightly coupled computational workload and a web server providing content to customers as a representative loosely coupled network intensive workload. The performance evaluation demonstrates VM granularity has a significant impact on the performance of the computational workload. On an 8-CPU machine, the performance obtained from utilizing 8VMs is more than 4 times higher than that given by 4 or 16 VMs for HPL of problem size 4096; whereas on two machines with a total of 12 CPUs 24 VMs gives the best performance for HPL of problem sizes from 256 to 1024. Our results also indicate that the effect of VM granularity on the performance of the web system is not critical. The largest standard deviation of the transaction rates obtained from varying VM granularity is merely 2.89 with a mean value of 21.34. These observations suggest that VM malleability strategies where VM granularity is changed dynamically, can be used to improve the performance of tightly coupled computational workloads, whereas VM consolidation for energy savings can be more effectively applied to loosely coupled network intensive workloads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虚拟机粒度对云计算工作负载性能的影响
本文研究了云计算环境下虚拟机粒度对工作负载性能的影响。我们使用HPL作为紧密耦合计算工作负载的代表,而使用向客户提供内容的web服务器作为松散耦合网络密集型工作负载的代表。性能评估表明,VM粒度对计算工作负载的性能有重大影响。在8个cpu的机器上,对于问题大小为4096的HPL,使用8vm获得的性能比使用4或16 vm获得的性能高4倍以上;而在两台总共有12个cpu的机器上,24个vm为问题大小从256到1024的HPL提供了最佳性能。我们的研究结果还表明,虚拟机粒度对web系统性能的影响并不重要。从不同VM粒度获得的事务率的最大标准偏差仅为2.89,平均值为21.34。这些观察结果表明,VM延展性策略(VM粒度动态变化)可用于提高紧耦合计算工作负载的性能,而VM合并以节省能源可以更有效地应用于松耦合网络密集型工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On allocation policies for power and performance Adaptively detecting changes in Autonomic Grid Computing Cost-driven scheduling of grid workflows using Partial Critical Paths On the impact of monitoring router energy consumption for greening the Internet SLA compliance monitoring through semantic processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1