{"title":"Triazine Polymers for Improving Elastic Properties in Oil Well Cements","authors":"Hasmukh R. Patel, Kenneth W. Johnson, R. Martinez","doi":"10.2118/204333-ms","DOIUrl":null,"url":null,"abstract":"\n The oil well cement placed in the annulus between casings and the formations experience high stresses under downhole conditions. These frequent stresses deteriorate the mechanical properties of cement and lead to the formation of micro-cracks and fractures, which affect production and increases the cost of operation. Although several polymeric materials have been employed to improve tensile properties of the cement, these additives have also adversely affected the compressive strength of the cement. A highly stable polymeric additive, triazine-based polymers, is designed, synthesized, and compounded with the cement to improve the tensile properties of the well-cement. Triazine polymer was characterized by fourier transform infrared spectroscopy and thermogravimetric analysis. The triazine polymer was mixed with cement and the cement slurries were cured at 180 °F under 3000 psi for 3 days. The set-cement samples were subjected to mechanical testing under high temperature and high pressure to study the elastic properties of the cement. The introduction of this polymer into the cement has improved the elastic properties of the cement with minimum reduction in compressive strength. The thickening time, dynamic compressive strength development, rheology, fluid loss properties, and brazilian tensile strength of the control and cement with triazine polymers were studied to understand the effect of this newly developed polymeric additive. The molecular interaction of the triazine polymer with cement particles has shown formation of covalent linkage between the polymer and cement particle. We have observed a 15 % decrease in Young's modulus for cement compounded with 2%wt. of triazine polymer, indicating the introduction of elastic properties in wellbore cement.","PeriodicalId":10910,"journal":{"name":"Day 2 Tue, December 07, 2021","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, December 07, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204333-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The oil well cement placed in the annulus between casings and the formations experience high stresses under downhole conditions. These frequent stresses deteriorate the mechanical properties of cement and lead to the formation of micro-cracks and fractures, which affect production and increases the cost of operation. Although several polymeric materials have been employed to improve tensile properties of the cement, these additives have also adversely affected the compressive strength of the cement. A highly stable polymeric additive, triazine-based polymers, is designed, synthesized, and compounded with the cement to improve the tensile properties of the well-cement. Triazine polymer was characterized by fourier transform infrared spectroscopy and thermogravimetric analysis. The triazine polymer was mixed with cement and the cement slurries were cured at 180 °F under 3000 psi for 3 days. The set-cement samples were subjected to mechanical testing under high temperature and high pressure to study the elastic properties of the cement. The introduction of this polymer into the cement has improved the elastic properties of the cement with minimum reduction in compressive strength. The thickening time, dynamic compressive strength development, rheology, fluid loss properties, and brazilian tensile strength of the control and cement with triazine polymers were studied to understand the effect of this newly developed polymeric additive. The molecular interaction of the triazine polymer with cement particles has shown formation of covalent linkage between the polymer and cement particle. We have observed a 15 % decrease in Young's modulus for cement compounded with 2%wt. of triazine polymer, indicating the introduction of elastic properties in wellbore cement.