Algorithmic Analysis of Automatic Attendance System Using Facial Recognition: A Revolutionary Approach for Future Education

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Decision Support System Technology Pub Date : 2022-01-01 DOI:10.4018/ijdsst.286688
Rohit Rastogi, Abhinav Tyagi, Himanshu Upadhyay, Devendra Singh
{"title":"Algorithmic Analysis of Automatic Attendance System Using Facial Recognition: A Revolutionary Approach for Future Education","authors":"Rohit Rastogi, Abhinav Tyagi, Himanshu Upadhyay, Devendra Singh","doi":"10.4018/ijdsst.286688","DOIUrl":null,"url":null,"abstract":"Attendance management can become a tedious task for teachers if it is performed manually.. This problem can be solved with the help of an automatic attendance management system. But validation is one of the main issues in the system. Generally, biometrics are used in the smart automatic attendance system. Managing attendance with the help of face recognition is one of the biometric methods with better efficiency as compared to others. Smart Attendance with the help of instant face recognition is a real-life solution that helps in handling daily life activities and maintaining a student attendance system. Face recognition-based attendance system uses face biometrics which is based on high resolution monitor video and other technologies to recognize the face of the student. In project, the system will be able to find and recognize human faces fast and accurately with the help of images or videos that will be captured through a surveillance camera. It will convert the frames of the video into images so that our system can easily search that image in the attendance database.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":"55 99 1","pages":"1-19"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.286688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Attendance management can become a tedious task for teachers if it is performed manually.. This problem can be solved with the help of an automatic attendance management system. But validation is one of the main issues in the system. Generally, biometrics are used in the smart automatic attendance system. Managing attendance with the help of face recognition is one of the biometric methods with better efficiency as compared to others. Smart Attendance with the help of instant face recognition is a real-life solution that helps in handling daily life activities and maintaining a student attendance system. Face recognition-based attendance system uses face biometrics which is based on high resolution monitor video and other technologies to recognize the face of the student. In project, the system will be able to find and recognize human faces fast and accurately with the help of images or videos that will be captured through a surveillance camera. It will convert the frames of the video into images so that our system can easily search that image in the attendance database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脸识别自动考勤系统的算法分析:未来教育的革命性方法
如果手工管理考勤,对老师来说会成为一项繁琐的任务。这个问题可以通过一个自动考勤管理系统来解决。但验证是该系统的主要问题之一。智能自动考勤系统一般采用生物识别技术。利用人脸识别技术进行考勤管理是目前效率较高的一种生物识别方法。智能考勤与即时面部识别的帮助是一个现实生活中的解决方案,有助于处理日常生活活动和维护学生考勤系统。基于人脸识别的考勤系统采用基于高分辨率监控视频的人脸生物识别等技术对学生进行人脸识别。在项目中,该系统将能够通过监控摄像头拍摄的图像或视频,快速准确地找到并识别人脸。它会将视频的帧转换为图像,以便我们的系统可以轻松地在考勤数据库中搜索该图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Decision Support System Technology
International Journal of Decision Support System Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
18.20%
发文量
40
期刊最新文献
A Novel Query Method for Spatial Database Based on Improved K-Nearest Neighbor Algorithm Analysis and Evaluation of Roadblocks Hindering Lean-Green and Industry 4.0 Practices in Indian Manufacturing Industries Developing Fuzzy-AHP-Integrated Hybrid MCDM System of COPRAS-ARAS for Solving an Industrial Robot Selection Problem Generalized Parametric Intuitionistic Fuzzy Measures Based on Trigonometric Functions for Improved Decision-Making Problem An Efficient Method to Decide the Malicious Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1