Feature Extraction Using Apparent Power and Real Power for Smart Home Data Classification

V. Vadakattu, S. Suthaharan
{"title":"Feature Extraction Using Apparent Power and Real Power for Smart Home Data Classification","authors":"V. Vadakattu, S. Suthaharan","doi":"10.1109/ICMLA.2018.00209","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to perform an experimental research and show that simple statistical predictors can reveal usage patterns of the electrical appliances from smart meter and sensor readings. We used an open data set of Smart* project and its real power and apparent power variability to accomplish this goal. We generated the predictors using block-based statistical information of the real power and apparent power associated with each appliance class type. We constructed five machine learning models using these predictors and evaluated them using random forest classification and the qualitative measures – classification accuracy, out-of-bag error, and misclassification error. Our finding is that the simple statistical predictors that reveal smart home occupants appliance usage patterns and energy consumption details can be obtained through smart home data analytics. Our finding includes that the statistical predictors generated from apparent power can improve the accuracy of the significantly-imbalanced smart home data classification.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"2 1","pages":"1290-1295"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The goal of this paper is to perform an experimental research and show that simple statistical predictors can reveal usage patterns of the electrical appliances from smart meter and sensor readings. We used an open data set of Smart* project and its real power and apparent power variability to accomplish this goal. We generated the predictors using block-based statistical information of the real power and apparent power associated with each appliance class type. We constructed five machine learning models using these predictors and evaluated them using random forest classification and the qualitative measures – classification accuracy, out-of-bag error, and misclassification error. Our finding is that the simple statistical predictors that reveal smart home occupants appliance usage patterns and energy consumption details can be obtained through smart home data analytics. Our finding includes that the statistical predictors generated from apparent power can improve the accuracy of the significantly-imbalanced smart home data classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视在功率和实际功率的智能家居数据分类特征提取
本文的目的是进行一项实验研究,并表明简单的统计预测可以从智能电表和传感器读数中揭示电器的使用模式。我们使用了Smart*项目的开放数据集及其实际功率和视在功率变异性来实现这一目标。我们使用基于块的实际功率和视在功率的统计信息来生成预测器,这些信息与每个电器类别类型相关。我们使用这些预测因子构建了5个机器学习模型,并使用随机森林分类和定性指标(分类精度、袋外误差和误分类误差)对它们进行了评估。我们的发现是,通过智能家居数据分析,可以获得揭示智能家居居住者家电使用模式和能源消耗细节的简单统计预测。我们的发现包括,视在功率产生的统计预测因子可以提高显著不平衡的智能家居数据分类的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teacher/Student Deep Semi-Supervised Learning for Training with Noisy Labels Asymmetric Gaussian-Based Statistical Models Using Markov Chain Monte Carlo Techniques for Image Categorization Real-Time Prediction of Employee Engagement Using Social Media and Text Mining Fine-Grained Image Classification via Spatial Saliency Extraction SEDAT: Sentiment and Emotion Detection in Arabic Text Using CNN-LSTM Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1