Usability and Performance Improvements in Hatchet

Q4 Social Sciences Meta: Avaliacao Pub Date : 2020-11-01 DOI:10.1109/HUSTProtools51951.2020.00013
S. Brink, Ian Lumsden, Connor Scully-Allison, Katy Williams, Olga Pearce, T. Gamblin, M. Taufer, Katherine E. Isaacs, A. Bhatele
{"title":"Usability and Performance Improvements in Hatchet","authors":"S. Brink, Ian Lumsden, Connor Scully-Allison, Katy Williams, Olga Pearce, T. Gamblin, M. Taufer, Katherine E. Isaacs, A. Bhatele","doi":"10.1109/HUSTProtools51951.2020.00013","DOIUrl":null,"url":null,"abstract":"Performance analysis is critical for pinpointing bottlenecks in parallel applications. Several profilers exist to instrument parallel programs on HPC systems and gather performance data. Hatchet is an open-source Python library that can read profiling output of several tools, and enables the user to perform a variety of programmatic analyses on hierarchical performance profiles. In this paper, we augment Hatchet to support new features: a query language for representing call path patterns that can be used to filter a calling context tree, visualization support for displaying and interacting with performance profiles, and new operations for performing analyses on multiple datasets. Additionally, we present performance optimizations in Hatchet’s HPCToolkit reader and the unify operation to enable scalable analysis of large datasets.","PeriodicalId":38836,"journal":{"name":"Meta: Avaliacao","volume":"49 1","pages":"49-58"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta: Avaliacao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUSTProtools51951.2020.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 6

Abstract

Performance analysis is critical for pinpointing bottlenecks in parallel applications. Several profilers exist to instrument parallel programs on HPC systems and gather performance data. Hatchet is an open-source Python library that can read profiling output of several tools, and enables the user to perform a variety of programmatic analyses on hierarchical performance profiles. In this paper, we augment Hatchet to support new features: a query language for representing call path patterns that can be used to filter a calling context tree, visualization support for displaying and interacting with performance profiles, and new operations for performing analyses on multiple datasets. Additionally, we present performance optimizations in Hatchet’s HPCToolkit reader and the unify operation to enable scalable analysis of large datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斧的可用性和性能改进
性能分析对于确定并行应用程序中的瓶颈至关重要。存在一些分析器来检测HPC系统上的并行程序并收集性能数据。Hatchet是一个开源Python库,可以读取多个工具的分析输出,并使用户能够对分层性能配置文件执行各种编程分析。在本文中,我们增强了Hatchet以支持新的特性:用于表示调用路径模式的查询语言,可用于过滤调用上下文树,用于显示和与性能配置文件交互的可视化支持,以及用于在多个数据集上执行分析的新操作。此外,我们还介绍了Hatchet的HPCToolkit阅读器的性能优化和统一操作,以实现对大型数据集的可扩展分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Meta: Avaliacao
Meta: Avaliacao Social Sciences-Education
CiteScore
0.40
自引率
0.00%
发文量
13
审稿时长
10 weeks
期刊最新文献
Camera spectral sensitivity estimation based on spectrally tunable LED illumination Metamer mismatch volume calculation method based on high-dimensional spherical sampling Machine vision-based portable track inspection system Optimization of RGB image spectral reconstruction based on radial basis function networks Study on spectral adaptive transformation based on chromatic aberration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1