{"title":"Scalable coordinated uplink processing in cloud radio access networks","authors":"Congmin Fan, Y. Zhang, Xiaojun Yuan","doi":"10.1109/GLOCOM.2014.7037365","DOIUrl":null,"url":null,"abstract":"Featured by centralized processing and cloud based infrastructure, Cloud Radio Access Network (C-RAN) is a promising solution to achieve an unprecedented system capacity in future wireless cellular networks. The huge capacity gain mainly comes from the centralized and coordinated signal processing at the cloud server. However, full-scale coordination in a large-scale C-RAN requires the processing of very large channel matrices, leading to high computational complexity and channel estimation overhead. To resolve this challenge, we show in this paper that the channel matrices can be greatly sparsified without substantially compromising the system capacity. Through rigorous analysis, we derive a simple threshold-based channel matrix sparsification approach. Based on this approach, for reasonably large networks, the non-zero entries in the channel matrix can be reduced to a very low percentage (say 0.13% ~ 2%) by compromising only 5% of SINR. This means each RRH only needs to obtain the CSI of a small number of closest users, resulting in a significant reduction in the channel estimation overhead. On the other hand, the high sparsity of the channel matrix allows us to design detection algorithms that are scalable in the sense that the average computational complexity per user does not grow with the network size.","PeriodicalId":6492,"journal":{"name":"2014 IEEE Global Communications Conference","volume":"112 1","pages":"3591-3596"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2014.7037365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Featured by centralized processing and cloud based infrastructure, Cloud Radio Access Network (C-RAN) is a promising solution to achieve an unprecedented system capacity in future wireless cellular networks. The huge capacity gain mainly comes from the centralized and coordinated signal processing at the cloud server. However, full-scale coordination in a large-scale C-RAN requires the processing of very large channel matrices, leading to high computational complexity and channel estimation overhead. To resolve this challenge, we show in this paper that the channel matrices can be greatly sparsified without substantially compromising the system capacity. Through rigorous analysis, we derive a simple threshold-based channel matrix sparsification approach. Based on this approach, for reasonably large networks, the non-zero entries in the channel matrix can be reduced to a very low percentage (say 0.13% ~ 2%) by compromising only 5% of SINR. This means each RRH only needs to obtain the CSI of a small number of closest users, resulting in a significant reduction in the channel estimation overhead. On the other hand, the high sparsity of the channel matrix allows us to design detection algorithms that are scalable in the sense that the average computational complexity per user does not grow with the network size.