Multifidelity Surrogate Modeling for Time-Series Outputs

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2021-09-23 DOI:10.1137/20m1386694
Baptiste Kerleguer
{"title":"Multifidelity Surrogate Modeling for Time-Series Outputs","authors":"Baptiste Kerleguer","doi":"10.1137/20m1386694","DOIUrl":null,"url":null,"abstract":"This paper considers the surrogate modeling of a complex numerical code in a multifidelity framework when the code output is a time series. Using an experimental design of the low-and high-fidelity code levels, an original Gaussian process regression method is proposed. The code output is expanded on a basis built from the experimental design. The first coefficients of the expansion of the code output are processed by a co-kriging approach. The last coefficients are collectively processed by a kriging approach with covariance tensorization. The resulting surrogate model taking into account the uncertainty in the basis construction is shown to have better performance in terms of prediction errors and uncertainty quantification than standard dimension reduction techniques.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/20m1386694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper considers the surrogate modeling of a complex numerical code in a multifidelity framework when the code output is a time series. Using an experimental design of the low-and high-fidelity code levels, an original Gaussian process regression method is proposed. The code output is expanded on a basis built from the experimental design. The first coefficients of the expansion of the code output are processed by a co-kriging approach. The last coefficients are collectively processed by a kriging approach with covariance tensorization. The resulting surrogate model taking into account the uncertainty in the basis construction is shown to have better performance in terms of prediction errors and uncertainty quantification than standard dimension reduction techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列输出的多保真代理建模
本文研究了在多保真框架下,当编码输出为时间序列时,复杂数值编码的代理建模问题。通过对低保真度和高保真度码级的实验设计,提出了一种原始的高斯过程回归方法。代码输出是在实验设计的基础上扩展的。通过共同克里格方法处理码输出展开的第一个系数。最后的系数用克里格方法进行协方差张化处理。结果表明,考虑基构造不确定性的代理模型在预测误差和不确定性量化方面比标准降维技术具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1