Goal-driven semi-automated generation of semantic models

A. Stirtzinger, C. Anken, B. McQueary
{"title":"Goal-driven semi-automated generation of semantic models","authors":"A. Stirtzinger, C. Anken, B. McQueary","doi":"10.1109/CISDA.2009.5356518","DOIUrl":null,"url":null,"abstract":"The approach taken with OGEP is to parse relevant domain data in the form of unstructured content (or corpus) and use that knowledge to generate and/or evolve an existing ontology. OGEP creates a constant conversation between the corpus parser and a reasoning mechanism (corpus reasoner) that continually formulates potential ontology modifications in the form of hypotheses. These hypotheses are weighted towards contextual relevancy and further reasoned over to provide a confidence measure for use in deciding new assertions to the ontology. The new assertions generated from the corpus reasoner can either be automatically asserted based on confidence measure, or can be asserted by OGEP interacting with a user for final approval. This paper describes the OGEP technology in the context of the architectural components and identifies a potential technology transition path to Scott AFB's Tanker Airlift Control Center (TACC), which serves as the Air Operations Center (AOC) for the Air Mobility Command (AMC).","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"87 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The approach taken with OGEP is to parse relevant domain data in the form of unstructured content (or corpus) and use that knowledge to generate and/or evolve an existing ontology. OGEP creates a constant conversation between the corpus parser and a reasoning mechanism (corpus reasoner) that continually formulates potential ontology modifications in the form of hypotheses. These hypotheses are weighted towards contextual relevancy and further reasoned over to provide a confidence measure for use in deciding new assertions to the ontology. The new assertions generated from the corpus reasoner can either be automatically asserted based on confidence measure, or can be asserted by OGEP interacting with a user for final approval. This paper describes the OGEP technology in the context of the architectural components and identifies a potential technology transition path to Scott AFB's Tanker Airlift Control Center (TACC), which serves as the Air Operations Center (AOC) for the Air Mobility Command (AMC).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
目标驱动的半自动化语义模型生成
OGEP采用的方法是以非结构化内容(或语料库)的形式解析相关领域数据,并使用这些知识来生成和/或发展现有的本体。OGEP在语料库解析器和推理机制(语料库推理器)之间创建一个持续的对话,该机制不断地以假设的形式表述潜在的本体修改。这些假设被加权到上下文相关性,并进一步推理,以提供用于决定对本体的新断言的置信度度量。从语料库推理器生成的新断言既可以基于置信度度量自动断言,也可以通过OGEP与用户交互以获得最终批准来断言。本文描述了OGEP技术在体系结构组件的背景下,并确定了Scott空军基地加油机空运控制中心(TACC)的潜在技术过渡路径,该中心作为空中机动司令部(AMC)的空中作战中心(AOC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolving spiking neural networks: A novel growth algorithm corrects the teacher Emitter geolocation using low-accuracy direction-finding sensors Secure two and multi-party association rule mining Passive multitarget tracking using transmitters of opportunity Bias phenomenon and analysis of a nonlinear transformation in a mobile passive sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1