Aggregate characteristics and aggregate-associated soil organic carbon and carbohydrates of soils under contrasting tree land use

IF 0.5 Q4 AGRONOMY Sains Tanah Pub Date : 2021-12-26 DOI:10.20961/stjssa.v18i2.53615
B. Udom, J. Ogunwole, C. Wokocha
{"title":"Aggregate characteristics and aggregate-associated soil organic carbon and carbohydrates of soils under contrasting tree land use","authors":"B. Udom, J. Ogunwole, C. Wokocha","doi":"10.20961/stjssa.v18i2.53615","DOIUrl":null,"url":null,"abstract":"Protection of soil organic carbon and acid-hydrolyzable carbohydrates in aggregate-size fractions is important for appraising soil degradation and aggregation under land use types. Aggregate-associated soil organic carbon (SOC) and acid-hydrolyzable carbohydrates (R-CHO) in bulk soils and aggregate-size fractions of a sandy loam soil under Alchornea bush, Rubber, Oil palm and Teak plantations in southern Nigeria were studied. Results revealed significant differences in aggregate-associated SOC and R-CHO, bulk densities, total porosity, soil organic carbon stock and aggregate stability among the land use types. Greater SOC was stored in macro-aggregates >0.25 mm, while greater R-CHO was occluded in micro-aggregates <0.25 mm (p<0.05). The highest mean weight diameter (MWD) was 1.01 mm in Alchornea soils and 0.92 mm in Oil palm plantation at 0-15 cm topsoil. Soil organic carbon stock in 0-15 cm topsoil was 77.7, 81.8, 92.2, and 67.5 kg C ha-1 in Alchornea, Rubber, Oil palm, and Teak soils, respectively. Relationships showed a positive linear correlations between MWD and SOC (r = 0.793, p < 0.05) and R-CHO (r = 0.789. p < 0.05). Alchornea bush and Oil palm plantation increased macro-aggregate formation and macro-pores >5 µm, therefore they have greater potentials to boost protection of SOC in soil macro-aggregates.","PeriodicalId":36463,"journal":{"name":"Sains Tanah","volume":"46 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sains Tanah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/stjssa.v18i2.53615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Protection of soil organic carbon and acid-hydrolyzable carbohydrates in aggregate-size fractions is important for appraising soil degradation and aggregation under land use types. Aggregate-associated soil organic carbon (SOC) and acid-hydrolyzable carbohydrates (R-CHO) in bulk soils and aggregate-size fractions of a sandy loam soil under Alchornea bush, Rubber, Oil palm and Teak plantations in southern Nigeria were studied. Results revealed significant differences in aggregate-associated SOC and R-CHO, bulk densities, total porosity, soil organic carbon stock and aggregate stability among the land use types. Greater SOC was stored in macro-aggregates >0.25 mm, while greater R-CHO was occluded in micro-aggregates <0.25 mm (p<0.05). The highest mean weight diameter (MWD) was 1.01 mm in Alchornea soils and 0.92 mm in Oil palm plantation at 0-15 cm topsoil. Soil organic carbon stock in 0-15 cm topsoil was 77.7, 81.8, 92.2, and 67.5 kg C ha-1 in Alchornea, Rubber, Oil palm, and Teak soils, respectively. Relationships showed a positive linear correlations between MWD and SOC (r = 0.793, p < 0.05) and R-CHO (r = 0.789. p < 0.05). Alchornea bush and Oil palm plantation increased macro-aggregate formation and macro-pores >5 µm, therefore they have greater potentials to boost protection of SOC in soil macro-aggregates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同林地利用方式下土壤团聚体特征及团聚体相关的土壤有机碳和碳水化合物
土壤有机碳和酸水解碳水化合物的保护是评价不同土地利用类型下土壤退化和聚集的重要依据。研究了尼日利亚南部Alchornea灌木、橡胶、油棕和柚木人工林中大块土壤和砂壤土中团聚体相关土壤有机碳(SOC)和酸水解碳水化合物(R-CHO)的含量。结果表明,不同土地利用类型土壤团聚体相关有机碳和R-CHO、容重、总孔隙度、土壤有机碳储量和团聚体稳定性存在显著差异。>0.25 mm的大团聚体中碳含量较高,而5µm的微团聚体中R-CHO含量较高,因此它们对土壤大团聚体中有机碳的保护潜力更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sains Tanah
Sains Tanah Environmental Science-Pollution
CiteScore
1.90
自引率
0.00%
发文量
16
审稿时长
8 weeks
期刊最新文献
Native Metallophytes on Ultramafic Wooded Grassland in Sta Cruz, Mindoro Occidental, Philippines: Insights Into Phytostabilization and Forest Restoration Effect of the pre-magnetic treatment of seeds and the N-fertilizer on the yield and quality of groundnut grown in sandy soil Physicochemical characterization and presence of heavy metals in the trout farming area of Lake Titicaca, Peru Shallot growth and yield supported by irrigation and nitrogen application in utilizing dry land area in Mesuji, Lampung Province, Indonesia Characteristics and utilization of black soils in Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1