{"title":"The Fundamental Study on th e Soil Remediation for Copper Contaminated Soil using Nanobubble Water","authors":"Jeon Sohee, Dongchan Kim, Junggeun Han","doi":"10.12814/JKGSS.2017.16.1.031","DOIUrl":null,"url":null,"abstract":"The fundamental study for an application of nanobubble as a soil remediation enhancer on heavy metal contaminated soil was carried out. The existence and long-term stability of hydrogen nanobubbles were investigated by particle analysis and zeta-potential analysis. And the removal efficiency of copper using nanobubble water(NBW) and distilled water(DW) were compared and analyzed through a batch desorption test. As a result, it is confirmed that nanobubble which was fabricated by compression-dissolution type generator can exist for more than 14 days. The results of batch test show that copper removal of NBW was higher than that of DW irrespectively to soil type and increased as solid-liquid ratio and contact time increased, respectively. According to the pH change, the removal of copper on sand was higher on the acid side but the removal difference was slightly lower on the clay. It is considered that a high efficiency of NBW in copper removal is due to the large surface area and high zeta-potential of nanobubbles. Therefore, the nanobubble can be applied to soil remediation for heavy-metal contaminated soil as an eco-friendly enhancer.","PeriodicalId":42164,"journal":{"name":"Journal of the Korean Geosynthetic Society","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2017-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Geosynthetic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12814/JKGSS.2017.16.1.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 6
Abstract
The fundamental study for an application of nanobubble as a soil remediation enhancer on heavy metal contaminated soil was carried out. The existence and long-term stability of hydrogen nanobubbles were investigated by particle analysis and zeta-potential analysis. And the removal efficiency of copper using nanobubble water(NBW) and distilled water(DW) were compared and analyzed through a batch desorption test. As a result, it is confirmed that nanobubble which was fabricated by compression-dissolution type generator can exist for more than 14 days. The results of batch test show that copper removal of NBW was higher than that of DW irrespectively to soil type and increased as solid-liquid ratio and contact time increased, respectively. According to the pH change, the removal of copper on sand was higher on the acid side but the removal difference was slightly lower on the clay. It is considered that a high efficiency of NBW in copper removal is due to the large surface area and high zeta-potential of nanobubbles. Therefore, the nanobubble can be applied to soil remediation for heavy-metal contaminated soil as an eco-friendly enhancer.