5G: Vision and Requirements for Mobile Communication System towards Year 2020

Q4 Engineering 工程设计学报 Pub Date : 2016-04-06 DOI:10.1155/2016/5974586
Guangyi Liu, D. Jiang
{"title":"5G: Vision and Requirements for Mobile Communication System towards Year 2020","authors":"Guangyi Liu, D. Jiang","doi":"10.1155/2016/5974586","DOIUrl":null,"url":null,"abstract":"The forecast for future 10 years’ traffic demand shows an increase in 1000 scales and more than 100 billion connections of Internet of Things, which imposes a big challenge for future mobile communication technology beyond year 2020. The mobile industry is struggling in the challenges of high capacity demand but low cost for future mobile network when it starts to enable a connected mobile world. 5G is targeted to shed light on these contradictory demands towards year 2020. This paper firstly forecasts the vision of mobile communication’s application in the daily life of the society and then figures out the traffic trends and demands for next 10 years from the Mobile Broadband (MBB) service and Internet of Things (IoT) perspective, respectively. The requirements from the specific service and user demands are analyzed, and the specific requirements from typical usage scenarios are calculated by the defined performance indicators. To achieve the target of affordable 5G service, the requirements from network deployment and operation perspective are also captured. Finally, the capabilities and the efficiency requirements of the 5G system are demonstrated as a flower. To realize the vision of 5G, “information a finger away, everything in touch,” 5G will provide the fiber-like access data rate, “zero” latency user experience, and connecting to more than 100 billion devices and deliver a consistent experience across a variety of scenarios with the improved energy and cost efficiency by over a hundred of times.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"13 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2016/5974586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 156

Abstract

The forecast for future 10 years’ traffic demand shows an increase in 1000 scales and more than 100 billion connections of Internet of Things, which imposes a big challenge for future mobile communication technology beyond year 2020. The mobile industry is struggling in the challenges of high capacity demand but low cost for future mobile network when it starts to enable a connected mobile world. 5G is targeted to shed light on these contradictory demands towards year 2020. This paper firstly forecasts the vision of mobile communication’s application in the daily life of the society and then figures out the traffic trends and demands for next 10 years from the Mobile Broadband (MBB) service and Internet of Things (IoT) perspective, respectively. The requirements from the specific service and user demands are analyzed, and the specific requirements from typical usage scenarios are calculated by the defined performance indicators. To achieve the target of affordable 5G service, the requirements from network deployment and operation perspective are also captured. Finally, the capabilities and the efficiency requirements of the 5G system are demonstrated as a flower. To realize the vision of 5G, “information a finger away, everything in touch,” 5G will provide the fiber-like access data rate, “zero” latency user experience, and connecting to more than 100 billion devices and deliver a consistent experience across a variety of scenarios with the improved energy and cost efficiency by over a hundred of times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5G:面向2020年移动通信系统的愿景与需求
未来10年的流量需求预测显示,物联网规模将增加1000倍,连接数将超过1000亿,这对2020年以后的未来移动通信技术提出了巨大挑战。移动行业在开始实现互联移动世界时,正在努力应对未来移动网络的高容量需求和低成本挑战。5G的目标是在2020年之前阐明这些相互矛盾的需求。本文首先预测了移动通信在社会日常生活中的应用前景,然后分别从移动宽带(MBB)业务和物联网(IoT)的角度分析了未来10年的流量趋势和需求。分析具体业务需求和用户需求,通过定义的性能指标计算典型使用场景的具体需求。为了实现可负担的5G服务目标,还捕获了网络部署和运营角度的需求。最后,以一朵花的形式展示了5G系统的功能和效率需求。为了实现“信息一指之遥,一切触手可及”的5G愿景,5G将提供类似光纤的接入数据速率,“零”延迟用户体验,连接超过1000亿台设备,在各种场景下提供一致的体验,并将能源和成本效率提高百倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
工程设计学报
工程设计学报 Engineering-Engineering (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
2447
审稿时长
14 weeks
期刊介绍: Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.
期刊最新文献
Innovative design of box elevator epidemic prevention function integrating AD and TRIZ Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer Application progress of artificial intelligence in military confrontation Cloud storage data integrity audit based on an index–stub table Clinical named entity recognition from Chinese electronic medical records using a double-layer annotation model combining a domain dictionary with CRF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1