Perspectives for Targeting Ezrin in Cancer Development and Progression

Jean Carlos Lipreri da Silva, H. P. Vicari, J. Machado-Neto
{"title":"Perspectives for Targeting Ezrin in Cancer Development and Progression","authors":"Jean Carlos Lipreri da Silva, H. P. Vicari, J. Machado-Neto","doi":"10.3390/futurepharmacol3010005","DOIUrl":null,"url":null,"abstract":"Recent advances have been made in understanding molecular markers involved in cancer malignancy, resulting in better tumor staging and identifying new potential therapeutic targets. Ezrin (EZR), a member of the ezrin, radixin, moesin (ERM) protein family, is essential for linking the actin cytoskeleton to the cell membrane and participates in the signal transduction of key signaling pathways such as Rho GTPases and PI3K/AKT/mTOR. Clinical and preclinical studies in a wide variety of solid and hematological tumors indicate that (i) EZR is highly expressed and predicts an unfavorable clinical outcome, and (ii) EZR inhibition reduces proliferation, migration, and invasion in experimental models. The development of pharmacological inhibitors for EZR (or the signaling mediated by it) has opened a new round of investigation, but studies are still limited. The scope of the present review is to survey studies on the expression and clinical impact of EZR in cancer, as well as studies that perform interventions on the function of this gene/protein in cancer cells, providing proof-of-concept of its antineoplastic potential.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/futurepharmacol3010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recent advances have been made in understanding molecular markers involved in cancer malignancy, resulting in better tumor staging and identifying new potential therapeutic targets. Ezrin (EZR), a member of the ezrin, radixin, moesin (ERM) protein family, is essential for linking the actin cytoskeleton to the cell membrane and participates in the signal transduction of key signaling pathways such as Rho GTPases and PI3K/AKT/mTOR. Clinical and preclinical studies in a wide variety of solid and hematological tumors indicate that (i) EZR is highly expressed and predicts an unfavorable clinical outcome, and (ii) EZR inhibition reduces proliferation, migration, and invasion in experimental models. The development of pharmacological inhibitors for EZR (or the signaling mediated by it) has opened a new round of investigation, but studies are still limited. The scope of the present review is to survey studies on the expression and clinical impact of EZR in cancer, as well as studies that perform interventions on the function of this gene/protein in cancer cells, providing proof-of-concept of its antineoplastic potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
靶向Ezrin在癌症发生和进展中的研究进展
近年来,在了解恶性肿瘤的分子标志物方面取得了新的进展,从而更好地确定了肿瘤分期和新的潜在治疗靶点。Ezrin (EZR)是Ezrin, radixin, moesin (ERM)蛋白家族的成员,是连接肌动蛋白细胞骨架与细胞膜的重要分子,参与Rho GTPases和PI3K/AKT/mTOR等关键信号通路的信号转导。多种实体瘤和血液学肿瘤的临床和临床前研究表明:(i) EZR高表达,预示着不利的临床结果;(ii) EZR抑制可减少实验模型中的增殖、迁移和侵袭。EZR(或其介导的信号传导)的药理学抑制剂的开发开启了新一轮的研究,但研究仍然有限。本综述的范围是调查EZR在癌症中的表达和临床影响的研究,以及对该基因/蛋白在癌细胞中的功能进行干预的研究,提供其抗肿瘤潜力的概念证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Vitro and In Silico Biological Evaluation of the Essential Oil from Syzigium cumini Leaves as a Source of Novel Antifungal and Trichomonacidal Agents Biologics, Small Molecules and More in Inflammatory Bowel Disease: The Present and the Future Comparative Study of the Effects of Curcuminoids and Tetrahydrocurcuminoids on Melanogenesis: Role of the Methoxy Groups Using 5-Nitroimidazole Derivatives against Neglected Tropical Protozoan Diseases: Systematic Review Target-Based 6-5 Fused Ring Heterocyclic Scaffolds Display Broad Antiparasitic Potency In Vitro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1