{"title":"Insights on Satellite-Based IMERG Precipitation Estimates at Multiple Space and Time Scales for a Developing Urban Region in India","authors":"Padmini Ponukumati, Azharuddin Mohammed, Satish Regonda","doi":"10.1175/jhm-d-22-0160.1","DOIUrl":null,"url":null,"abstract":"\nSatellite-based rainfall estimates are a great resource for data-scarce regions, including urban regions, because of its finer resolution. Integrated Multi-satellitE Retrievals for GPM (IMERG) is a widely used product and is evaluated at a city scale for the Hyderabad region using two different ground truths, i.e., India Meteorological Department (IMD) gridded rainfall and Telangana State Development Planning Society (TSDPS) automatic weather station (AWS) measured rainfall. The IMERG rainfall estimates are evaluated on multiple spatial and temporal scales as well as on a rainfall event scale. Both continuous and categorical verification metrics suggest good performance of IMERG on the daily scale; however, relatively decreased performance was observed on the hourly scale. Underestimated and overestimated IMERG estimates with respect to IMD gridded rainfall and AWS measured rainfall, respectively, suggest the performance depends on type of ground truth. Unlike categorical metrics, RMSE and PBIAS have a pattern implying a systematic error with respect to rainfall amount. Further, sample size, diurnal variations, and season are found to have a role in IMERG estimates’ performance. Temporal aggregation of hourly to daily time scales showed the improved IMERG performance; however, no spatial-scale dependence was observed among zonewise and Hyderabad region–wise rainfall estimates. Comparison of raw and bias-corrected IMERG rainfall-based intensity–duration–frequency (IDF) curves with corresponding hourly rain gauge IDF curves showcases the value addition via simple bias correction techniques. Overall, the study suggests the IMERG estimates can be used as an alternative data source, and it can be further improved by modifying the retrieval algorithm.\n\n\nMany urban regions are typically data sparse, which limits scientific understanding and reliable engineering designs of various urban hydrometeorology-relevant tasks, including climatological and extreme rainfall characterization, flood hazard assessment, and stormwater management systems. Satellite rainfall estimates come as a great resource and Integrated Multi-satellitE Retrievals for GPM (IMERG) acts as a best alternative. The Hyderabad region, the sixth-largest metropolitan area in India, is selected to analyze the widely used satellite estimates, i.e., retrievals for GPM. The study observed inaccuracies in the IMERG estimates that varied with rainfall magnitudes and space and time scales; nonetheless, the estimates can be used as an alternative data source for decision-making such as whether rain exceeds a certain threshold or not.\n","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"107 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jhm-d-22-0160.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Satellite-based rainfall estimates are a great resource for data-scarce regions, including urban regions, because of its finer resolution. Integrated Multi-satellitE Retrievals for GPM (IMERG) is a widely used product and is evaluated at a city scale for the Hyderabad region using two different ground truths, i.e., India Meteorological Department (IMD) gridded rainfall and Telangana State Development Planning Society (TSDPS) automatic weather station (AWS) measured rainfall. The IMERG rainfall estimates are evaluated on multiple spatial and temporal scales as well as on a rainfall event scale. Both continuous and categorical verification metrics suggest good performance of IMERG on the daily scale; however, relatively decreased performance was observed on the hourly scale. Underestimated and overestimated IMERG estimates with respect to IMD gridded rainfall and AWS measured rainfall, respectively, suggest the performance depends on type of ground truth. Unlike categorical metrics, RMSE and PBIAS have a pattern implying a systematic error with respect to rainfall amount. Further, sample size, diurnal variations, and season are found to have a role in IMERG estimates’ performance. Temporal aggregation of hourly to daily time scales showed the improved IMERG performance; however, no spatial-scale dependence was observed among zonewise and Hyderabad region–wise rainfall estimates. Comparison of raw and bias-corrected IMERG rainfall-based intensity–duration–frequency (IDF) curves with corresponding hourly rain gauge IDF curves showcases the value addition via simple bias correction techniques. Overall, the study suggests the IMERG estimates can be used as an alternative data source, and it can be further improved by modifying the retrieval algorithm.
Many urban regions are typically data sparse, which limits scientific understanding and reliable engineering designs of various urban hydrometeorology-relevant tasks, including climatological and extreme rainfall characterization, flood hazard assessment, and stormwater management systems. Satellite rainfall estimates come as a great resource and Integrated Multi-satellitE Retrievals for GPM (IMERG) acts as a best alternative. The Hyderabad region, the sixth-largest metropolitan area in India, is selected to analyze the widely used satellite estimates, i.e., retrievals for GPM. The study observed inaccuracies in the IMERG estimates that varied with rainfall magnitudes and space and time scales; nonetheless, the estimates can be used as an alternative data source for decision-making such as whether rain exceeds a certain threshold or not.
期刊介绍:
The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.