Efficient face detection by a cascaded support–vector machine expansion

Sami Romdhani, P. Torr, Bernhard Schölkopf, Andrew Blake
{"title":"Efficient face detection by a cascaded support–vector machine expansion","authors":"Sami Romdhani, P. Torr, Bernhard Schölkopf, Andrew Blake","doi":"10.1098/rspa.2004.1333","DOIUrl":null,"url":null,"abstract":"We describe a fast system for the detection and localization of human faces in images using a nonlinear ‘support–vector machine’. We approximate the decision surface in terms of a reduced set of expansion vectors and propose a cascaded evaluation which has the property that the full support–vector expansion is only evaluated on the face–like parts of the image, while the largest part of typical images is classified using a single expansion vector (a simpler and more efficient classifier). As a result, only three reduced–set vectors are used, on average, to classify an image patch. Hence, the cascaded evaluation, presented in this paper, offers a thirtyfold speed–up over an evaluation using the full set of reduced–set vectors, which is itself already thirty times faster than classification using all the support vectors.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"12 1","pages":"3283 - 3297"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

We describe a fast system for the detection and localization of human faces in images using a nonlinear ‘support–vector machine’. We approximate the decision surface in terms of a reduced set of expansion vectors and propose a cascaded evaluation which has the property that the full support–vector expansion is only evaluated on the face–like parts of the image, while the largest part of typical images is classified using a single expansion vector (a simpler and more efficient classifier). As a result, only three reduced–set vectors are used, on average, to classify an image patch. Hence, the cascaded evaluation, presented in this paper, offers a thirtyfold speed–up over an evaluation using the full set of reduced–set vectors, which is itself already thirty times faster than classification using all the support vectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于级联支持向量机扩展的高效人脸检测
我们描述了一个使用非线性“支持向量机”的快速检测和定位图像中人脸的系统。我们根据一组简化的展开向量来近似决策面,并提出了一种级联评估方法,该方法具有仅在图像的人脸部分上评估完整的支持向量展开的特性,而典型图像的大部分使用单个展开向量进行分类(更简单,更有效的分类器)。因此,平均只使用三个约简集向量来对图像patch进行分类。因此,本文提出的级联评估比使用完整的简化集向量集的评估提供了30倍的速度,它本身已经比使用所有支持向量的分类快30倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
期刊最新文献
Plankton Nanocrystalline ceria imparts better high–temperature protection Spectral concentrations and resonances of a second–order block operator matrix and an associated λ–rational Sturm-Liouville problem Mechanical field fluctuations in polycrystals estimated by homogenization techniques Oblique scattering of plane flexural–gravity waves by heterogeneities in sea–ice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1