Early warning of the abnormal response of the generator set electrical control based on SIP concept

Guannan Li
{"title":"Early warning of the abnormal response of the generator set electrical control based on SIP concept","authors":"Guannan Li","doi":"10.1002/adc2.134","DOIUrl":null,"url":null,"abstract":"<p>An early warning method based on Session Initiation Protocol (SIP) concept for generator set electrical control abnormal response is proposed. The first is to clean the electrical data of the generator set by SIP. Using Supervisory Control and Data Acquisition (SCADA) and Generalized Linear Models (GLM) algorithm, a linear model is constructed to analyze the electrical control of generating units. Using the Autoregressive Integrated Moving Average Model (ARIMA), an abnormal response early warning model for electrical control of generating units is established. BP neural network is used to train the abnormal response data of the generator set electrical control. According to the current response data, the model prediction is realized, and the early warning of the abnormal response of the generator set electrical control is effectively realized. The simulation results show that the proposed method can effectively reduce the early-warning error, false alarm rate, and early-warning delay of generator electrical control abnormal response.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.134","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Control for Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adc2.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An early warning method based on Session Initiation Protocol (SIP) concept for generator set electrical control abnormal response is proposed. The first is to clean the electrical data of the generator set by SIP. Using Supervisory Control and Data Acquisition (SCADA) and Generalized Linear Models (GLM) algorithm, a linear model is constructed to analyze the electrical control of generating units. Using the Autoregressive Integrated Moving Average Model (ARIMA), an abnormal response early warning model for electrical control of generating units is established. BP neural network is used to train the abnormal response data of the generator set electrical control. According to the current response data, the model prediction is realized, and the early warning of the abnormal response of the generator set electrical control is effectively realized. The simulation results show that the proposed method can effectively reduce the early-warning error, false alarm rate, and early-warning delay of generator electrical control abnormal response.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 SIP 概念的发电机组电气控制异常反应预警系统
提出了一种基于会话发起协议(SIP)概念的发电机组电气控制异常响应预警方法。首先是通过 SIP 清理发电机组的电气数据。利用监控与数据采集(SCADA)和广义线性模型(GLM)算法,构建线性模型来分析发电机组的电气控制。利用自回归综合移动平均模型(ARIMA),建立了发电机组电气控制异常响应预警模型。利用 BP 神经网络训练发电机组电气控制的异常响应数据。根据当前响应数据实现模型预测,有效实现发电机组电气控制异常响应预警。仿真结果表明,所提出的方法能有效降低发电机组电气控制异常响应的预警误差、误报率和预警延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Efficient parameter estimation for second order plus dead time systems in process plant control Optimal installation of DG in radial distribution network using arithmetic optimization algorithm To cascade feedback loops, or not? A novel modulation for four-switch Buck-boost converter to eliminate the right half plane zero point
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1