Concretely efficient secure multi-party computation protocols: survey and more

D. Feng, Kang Yang
{"title":"Concretely efficient secure multi-party computation protocols: survey and more","authors":"D. Feng, Kang Yang","doi":"10.1051/sands/2021001","DOIUrl":null,"url":null,"abstract":"Secure multi-party computation (MPC) allows a set of parties to jointly compute a function on their private inputs, and reveals nothing but the output of the function. In the last decade, MPC has rapidly moved from a purely theoretical study to an object of practical interest, with a growing interest in practical applications such as privacy-preserving machine learning (PPML). In this paper, we comprehensively survey existing work on concretely efficient MPC protocols with both semi-honest and malicious security, in both dishonest-majority and honest-majority settings. We focus on considering the notion of security with abort, meaning that corrupted parties could prevent honest parties from receiving output after they receive output. We present high-level ideas of the basic and key approaches for designing different styles of MPC protocols and the crucial building blocks of MPC. For MPC applications, we compare the known PPML protocols built on MPC, and describe the efficiency of private inference and training for the state-of-the-art PPML protocols. Furthermore, we summarize several challenges and open problems to break though the efficiency of MPC protocols as well as some interesting future work that is worth being addressed. This survey aims to provide the recent development and key approaches of MPC to researchers, who are interested in knowing, improving, and applying concretely efficient MPC protocols.","PeriodicalId":79641,"journal":{"name":"Hospital security and safety management","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hospital security and safety management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/sands/2021001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Secure multi-party computation (MPC) allows a set of parties to jointly compute a function on their private inputs, and reveals nothing but the output of the function. In the last decade, MPC has rapidly moved from a purely theoretical study to an object of practical interest, with a growing interest in practical applications such as privacy-preserving machine learning (PPML). In this paper, we comprehensively survey existing work on concretely efficient MPC protocols with both semi-honest and malicious security, in both dishonest-majority and honest-majority settings. We focus on considering the notion of security with abort, meaning that corrupted parties could prevent honest parties from receiving output after they receive output. We present high-level ideas of the basic and key approaches for designing different styles of MPC protocols and the crucial building blocks of MPC. For MPC applications, we compare the known PPML protocols built on MPC, and describe the efficiency of private inference and training for the state-of-the-art PPML protocols. Furthermore, we summarize several challenges and open problems to break though the efficiency of MPC protocols as well as some interesting future work that is worth being addressed. This survey aims to provide the recent development and key approaches of MPC to researchers, who are interested in knowing, improving, and applying concretely efficient MPC protocols.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具体有效的安全多方计算协议:调查和更多
安全多方计算(MPC)允许一组各方在他们的私有输入上共同计算一个函数,并且只显示函数的输出。在过去的十年中,MPC已经迅速从纯粹的理论研究转变为实际兴趣的对象,对隐私保护机器学习(PPML)等实际应用的兴趣越来越大。在本文中,我们全面地调查了在半诚实和恶意安全、非诚实多数和诚实多数设置下具体有效的MPC协议的现有工作。我们将重点考虑带有abort的安全概念,这意味着腐败方可能会阻止诚实方在收到输出后接收输出。我们提出了设计不同风格的MPC协议的基本方法和关键方法的高级思想,以及MPC的关键构建块。对于MPC应用,我们比较了建立在MPC上的已知PPML协议,并描述了最先进的PPML协议的私有推理和训练的效率。此外,我们总结了突破MPC协议效率的几个挑战和开放问题,以及一些值得解决的有趣的未来工作。本文旨在为有兴趣了解、改进和应用具体有效的MPC协议的研究人员提供MPC的最新发展和关键方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface: Security and Safety in Unmanned Systems Optimization for UAV-Assisted Simultaneous Transmission and Reception Communications in the Existence of Malicious Jammers Enabling Space-Air Integration: A Satellite-UAV Networking Authentication Scheme Adaptive Cooperative Secure Control of Networked Multiple Unmanned Systems under FDI Attacks Optimal DoS Attack on Multi-Channel Cyber-Physical Systems: A Stackelberg Game Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1