Self-optimized construction of transition rate matrices from accelerated atomistic simulations with Bayesian uncertainty quantification

T. Swinburne, D. Perez
{"title":"Self-optimized construction of transition rate matrices from accelerated atomistic simulations with Bayesian uncertainty quantification","authors":"T. Swinburne, D. Perez","doi":"10.1103/PhysRevMaterials.2.053802","DOIUrl":null,"url":null,"abstract":"A massively parallel method to build large transition rate matrices from temperature accelerated molecular dynamics trajectories is presented. Bayesian Markov model analysis is used to estimate the expected residence time in the known state space, providing crucial uncertainty quantification for higher scale simulation schemes such as kinetic Monte Carlo or cluster dynamics. The estimators are additionally used to optimize where exploration is performed and the degree of temperature ac- celeration on the fly, giving an autonomous, optimal procedure to explore the state space of complex systems. The method is tested against exactly solvable models and used to explore the dynamics of C15 interstitial defects in iron. Our uncertainty quantification scheme allows for accurate modeling of the evolution of these defects over timescales of several seconds.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevMaterials.2.053802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

A massively parallel method to build large transition rate matrices from temperature accelerated molecular dynamics trajectories is presented. Bayesian Markov model analysis is used to estimate the expected residence time in the known state space, providing crucial uncertainty quantification for higher scale simulation schemes such as kinetic Monte Carlo or cluster dynamics. The estimators are additionally used to optimize where exploration is performed and the degree of temperature ac- celeration on the fly, giving an autonomous, optimal procedure to explore the state space of complex systems. The method is tested against exactly solvable models and used to explore the dynamics of C15 interstitial defects in iron. Our uncertainty quantification scheme allows for accurate modeling of the evolution of these defects over timescales of several seconds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯不确定性量化的加速原子模拟中迁移速率矩阵的自优化构造
提出了一种利用温度加速分子动力学轨迹构建大转变速率矩阵的大规模并行方法。贝叶斯马尔可夫模型分析用于估计已知状态空间中的预期停留时间,为更高尺度的模拟方案(如动力学蒙特卡罗或簇动力学)提供关键的不确定性量化。此外,该估计器还用于动态优化探测的位置和温度加速度的程度,从而给出了一个自主的、最优的过程来探测复杂系统的状态空间。该方法在精确可解模型上进行了测试,并用于探索铁中C15间隙缺陷的动力学。我们的不确定度量化方案允许在几秒钟的时间尺度上对这些缺陷的演变进行精确的建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and computation for non-equilibrium gas dynamics: Beyond single relaxation time kinetic models Space-time computation and visualization of the electromagnetic fields and potentials generated by moving point charges Sparse Gaussian process potentials: Application to lithium diffusivity in superionic conducting solid electrolytes Reduced ionic diffusion by the dynamic electron–ion collisions in warm dense hydrogen HL-LHC Computing Review: Common Tools and Community Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1