Dynamic Control of the Efficiency of Waterflooding of Low-Permeability Reservoirs by Horizontal Injection Wells With Transverse Multi-Stage Hydraulic Fractures
I. Bazyrov, R. R. Galeev, A. Ipatov, Ilya Kayeshkov, S. Simakov, I. Fayzullin, E. Shel, Aleksandr Sheremeev, A. Shurunov, A. Yakovlev, M. Bikkulov, Ruslan Gayaztdinov, R. Uchuev, A. Logvinyuk
{"title":"Dynamic Control of the Efficiency of Waterflooding of Low-Permeability Reservoirs by Horizontal Injection Wells With Transverse Multi-Stage Hydraulic Fractures","authors":"I. Bazyrov, R. R. Galeev, A. Ipatov, Ilya Kayeshkov, S. Simakov, I. Fayzullin, E. Shel, Aleksandr Sheremeev, A. Shurunov, A. Yakovlev, M. Bikkulov, Ruslan Gayaztdinov, R. Uchuev, A. Logvinyuk","doi":"10.2118/196739-ms","DOIUrl":null,"url":null,"abstract":"\n At the pilot area of the oilfield in the Khanty-Mansi Autonomous Okrug, pilot works are being carried out to increase the development efficiency of low-permeability reservoirs using horizontal production and injection wells with transverse multistage hydraulic fractures (A.Shurunov et al., 2018). The paper describes the results of one stage of pilot works – the shifting of the central horizontal well into the injection and equipping this well with a fiber-optic system (FOS) for monitoring the downhole temperature field (DTS) and vibroacoustic oscillations (DAS).\n This work is a continuation of the work (A.Shurunov et al., 2018) and (R.Galeev et al., 2018) in the field of development of delivery methods for FOS in multiple-fractured horizontal wells (MFHW), testing the technology of DTS and DAS to evaluate the effectiveness of waterflooding of low-permeability reservoirs and monitoring the propagation of waterflood-induced fractures in injection horizontal well with transverse multistage hydraulic fractures.","PeriodicalId":10977,"journal":{"name":"Day 2 Wed, October 23, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 23, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196739-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
At the pilot area of the oilfield in the Khanty-Mansi Autonomous Okrug, pilot works are being carried out to increase the development efficiency of low-permeability reservoirs using horizontal production and injection wells with transverse multistage hydraulic fractures (A.Shurunov et al., 2018). The paper describes the results of one stage of pilot works – the shifting of the central horizontal well into the injection and equipping this well with a fiber-optic system (FOS) for monitoring the downhole temperature field (DTS) and vibroacoustic oscillations (DAS).
This work is a continuation of the work (A.Shurunov et al., 2018) and (R.Galeev et al., 2018) in the field of development of delivery methods for FOS in multiple-fractured horizontal wells (MFHW), testing the technology of DTS and DAS to evaluate the effectiveness of waterflooding of low-permeability reservoirs and monitoring the propagation of waterflood-induced fractures in injection horizontal well with transverse multistage hydraulic fractures.