Learning-Free Deep Features for Multispectral Palm-Print Classification

H. Bendjenna, Asma Aoun Allah, A. Meraoumia
{"title":"Learning-Free Deep Features for Multispectral Palm-Print Classification","authors":"H. Bendjenna, Asma Aoun Allah, A. Meraoumia","doi":"10.7494/csci.2023.24.2.4685","DOIUrl":null,"url":null,"abstract":"The feature extraction step is a major and crucial step in analyzing and understanding raw data as it has a considerable impact on the system accuracy. Unfortunately, despite the very acceptable results obtained by many handcrafted methods, they can have difficulty representing the features in the case of large databases or with strongly correlated samples. In this context, we proposed a new, simple and lightweight method for deep feature extraction. Our method can be configured to produce four different deep features, each controlled to tune the system accuracy. We have evaluated the performance of our method using a multispectral palmprint based biometric system and the experimental results, using the CASIA database, have shown that our method has high accuracy compared to many current handcrafted feature extraction methods and many well known deep learning based methods.","PeriodicalId":23063,"journal":{"name":"Theor. Comput. Sci.","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/csci.2023.24.2.4685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The feature extraction step is a major and crucial step in analyzing and understanding raw data as it has a considerable impact on the system accuracy. Unfortunately, despite the very acceptable results obtained by many handcrafted methods, they can have difficulty representing the features in the case of large databases or with strongly correlated samples. In this context, we proposed a new, simple and lightweight method for deep feature extraction. Our method can be configured to produce four different deep features, each controlled to tune the system accuracy. We have evaluated the performance of our method using a multispectral palmprint based biometric system and the experimental results, using the CASIA database, have shown that our method has high accuracy compared to many current handcrafted feature extraction methods and many well known deep learning based methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多光谱掌纹分类的免学习深度特征
特征提取是分析和理解原始数据的关键步骤,对系统的精度有很大的影响。不幸的是,尽管许多手工方法获得了非常可接受的结果,但在大型数据库或具有强相关样本的情况下,它们可能难以表示特征。在此背景下,我们提出了一种新的、简单的、轻量级的深度特征提取方法。我们的方法可以配置为产生四种不同的深度特征,每个特征都可以调节系统精度。我们使用基于多光谱掌纹的生物识别系统评估了我们的方法的性能,并且使用CASIA数据库的实验结果表明,与当前许多手工特征提取方法和许多知名的基于深度学习的方法相比,我们的方法具有较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Parameterized Complexity of s-club Cluster Deletion Problems Spiking neural P systems with weights and delays on synapses Iterated Uniform Finite-State Transducers on Unary Languages Lazy Regular Sensing State Complexity of Finite Partial Languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1