Akinleye Sowunmi, V. Efeovbokhan, O. Orodu, O. Olabode, Alma Oputa
{"title":"Comparative Study of Biopolymer Flooding: A Core Flooding and Numerical Reservoir Simulator Validation Analysis","authors":"Akinleye Sowunmi, V. Efeovbokhan, O. Orodu, O. Olabode, Alma Oputa","doi":"10.1155/2022/9420899","DOIUrl":null,"url":null,"abstract":"Polymers increase the macroscopic efficiency of the flooding process and increase crude oil recovery. The viscosity of 3 polymers xanthan, guar, and Arabic gums is measured in the lab and experimented with as EOR options. Xanthan and guar gum polymers are measured in weight percentages of 0.1, 0.2, 0.2, 0.4, 0.5, and 1, while gum Arabic is measured in 0.4, 0.5, 1, 5, 10, and 15 weight percentages. The viscosity experiments showed that gum Arabic had the lowest viscosity at 15% wt. Xanthan gum and guar gum had significantly higher viscosities than gum Arabic at corresponding weight percentages. At the same weight of 0.5%, xanthan, guar, and Arabic gums recorded a 63%, 53%, and 46% oil recovery, respectively. Due to the limitations surrounding core flooding experiments such as human error, equipment failure, and measurement of oil recoveries, it is necessary to validate the results obtained with other methods such as reservoir simulation. A reservoir model is built (using Eclipse) and incorporated with polymer and viscosity functions measured in the lab to validate results from the core flooding experiments. Peak oil recovery of 9.96%, 9.95%, and 9.90% was recorded for xanthan, guar, and Arabic gum, respectively, at a weight percentage of 0.5% weight. Also, increasing the wt% of injected polymers increases oil recovery. Results also indicate that the trend of oil recoveries during core flooding follows that observed during reservoir simulation and oil production increased as percentage weight increased for all the polymer cases considered.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9420899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Polymers increase the macroscopic efficiency of the flooding process and increase crude oil recovery. The viscosity of 3 polymers xanthan, guar, and Arabic gums is measured in the lab and experimented with as EOR options. Xanthan and guar gum polymers are measured in weight percentages of 0.1, 0.2, 0.2, 0.4, 0.5, and 1, while gum Arabic is measured in 0.4, 0.5, 1, 5, 10, and 15 weight percentages. The viscosity experiments showed that gum Arabic had the lowest viscosity at 15% wt. Xanthan gum and guar gum had significantly higher viscosities than gum Arabic at corresponding weight percentages. At the same weight of 0.5%, xanthan, guar, and Arabic gums recorded a 63%, 53%, and 46% oil recovery, respectively. Due to the limitations surrounding core flooding experiments such as human error, equipment failure, and measurement of oil recoveries, it is necessary to validate the results obtained with other methods such as reservoir simulation. A reservoir model is built (using Eclipse) and incorporated with polymer and viscosity functions measured in the lab to validate results from the core flooding experiments. Peak oil recovery of 9.96%, 9.95%, and 9.90% was recorded for xanthan, guar, and Arabic gum, respectively, at a weight percentage of 0.5% weight. Also, increasing the wt% of injected polymers increases oil recovery. Results also indicate that the trend of oil recoveries during core flooding follows that observed during reservoir simulation and oil production increased as percentage weight increased for all the polymer cases considered.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.