C. Assunção, Beth Chauncey Evers, C. Martins, K. Remmel
{"title":"Comparison of Code Stroke Response Times Between Emergency Department and Inpatient Settings in a Primary Stroke Center","authors":"C. Assunção, Beth Chauncey Evers, C. Martins, K. Remmel","doi":"10.14740/jnr688","DOIUrl":null,"url":null,"abstract":"Background: In stroke, timeliness of care is essential for optimal patient outcomes. While opportunities for code response time improvements have been extensively documented in the medical literature, this retrospective study aimed at providing data and insights for the development of a quality improvement project in the same hospital, with the ultimate goal of increasing code stroke response speeds without compromising the quality of care. Methods: This was a retrospective cohort study. Data were collected from weekly code stroke review meetings between January and December 2020 from both the emergency department (ED), and inpatient settings from one Joint Commission certified Primary Stroke Center. All code stroke cases with a computed tomography (CT) scan were included. For cases that received tissue plasminogen activator (tPA), variables collected were time from code-to-CT scan start, code-to-tPA, from CT scan start to tPA, and from CT scan completion to tPA. For code stroke cases that did not receive tPA, variables collected were code-to-CT scan start, code-to-CT scan read, from CT scan start to CT scan read, and from CT scan completion to CT scan read. Then, the ED’s code stroke response times were compared with those in the inpatient setting by using a two-tailed t -test and a 95% confidence interval. Results: From a sample of 206 code stroke activations in 2020, 157 activations met the study’s criteria. For cases that received tPA, the difference in the mean code-to-CT start times between ED and the inpatient settings (9.01 and 24.99 min, respectively) was statistically significant with a P-value < 0.05. For cases that did not receive tPA, the differences between ED and the inpatient settings in the mean code-to-CT start times (14.25 and 30.74 min, respectively) and code-to-CT read times (34.25 and 54.95 min, respectively) were also statistically significant with a P-value < 0.05. Conclusion: This study highlights the urgent need to improve code-to-CT times in this hospital’s inpatient setting since ED code stroke times were markedly better from a statistical viewpoint. Improving the quality of care will have to address the evident delay in transporting inpatients to the CT scanner after a code stroke has been activated. J Neurol Res. 2021;11(3-4):47-53 doi: https://doi.org/10.14740/jnr688","PeriodicalId":16489,"journal":{"name":"Journal of Neurology Research","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14740/jnr688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Background: In stroke, timeliness of care is essential for optimal patient outcomes. While opportunities for code response time improvements have been extensively documented in the medical literature, this retrospective study aimed at providing data and insights for the development of a quality improvement project in the same hospital, with the ultimate goal of increasing code stroke response speeds without compromising the quality of care. Methods: This was a retrospective cohort study. Data were collected from weekly code stroke review meetings between January and December 2020 from both the emergency department (ED), and inpatient settings from one Joint Commission certified Primary Stroke Center. All code stroke cases with a computed tomography (CT) scan were included. For cases that received tissue plasminogen activator (tPA), variables collected were time from code-to-CT scan start, code-to-tPA, from CT scan start to tPA, and from CT scan completion to tPA. For code stroke cases that did not receive tPA, variables collected were code-to-CT scan start, code-to-CT scan read, from CT scan start to CT scan read, and from CT scan completion to CT scan read. Then, the ED’s code stroke response times were compared with those in the inpatient setting by using a two-tailed t -test and a 95% confidence interval. Results: From a sample of 206 code stroke activations in 2020, 157 activations met the study’s criteria. For cases that received tPA, the difference in the mean code-to-CT start times between ED and the inpatient settings (9.01 and 24.99 min, respectively) was statistically significant with a P-value < 0.05. For cases that did not receive tPA, the differences between ED and the inpatient settings in the mean code-to-CT start times (14.25 and 30.74 min, respectively) and code-to-CT read times (34.25 and 54.95 min, respectively) were also statistically significant with a P-value < 0.05. Conclusion: This study highlights the urgent need to improve code-to-CT times in this hospital’s inpatient setting since ED code stroke times were markedly better from a statistical viewpoint. Improving the quality of care will have to address the evident delay in transporting inpatients to the CT scanner after a code stroke has been activated. J Neurol Res. 2021;11(3-4):47-53 doi: https://doi.org/10.14740/jnr688