Memory efficient Multi-Scale Line Detector architecture for retinal blood vessel segmentation

Hamza Bendaoudi, F. Cheriet, J. Langlois
{"title":"Memory efficient Multi-Scale Line Detector architecture for retinal blood vessel segmentation","authors":"Hamza Bendaoudi, F. Cheriet, J. Langlois","doi":"10.1109/DASIP.2016.7853797","DOIUrl":null,"url":null,"abstract":"This paper presents a memory efficient architecture that implements the Multi-Scale Line Detector (MSLD) algorithm for real-time retinal blood vessel detection in fundus images on a Zynq FPGA. This implementation benefits from the FPGA parallelism to drastically reduce the memory requirements of the MSLD from two images to a few values. The architecture is optimized in terms of resource utilization by reusing the computations and optimizing the bit-width. The throughput is increased by designing fully pipelined functional units. The architecture is capable of achieving a comparable accuracy to its software implementation but 70× faster for low resolution images. For high resolution images, it achieves an acceleration by a factor of 323×.","PeriodicalId":6494,"journal":{"name":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"11 1","pages":"59-64"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2016.7853797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a memory efficient architecture that implements the Multi-Scale Line Detector (MSLD) algorithm for real-time retinal blood vessel detection in fundus images on a Zynq FPGA. This implementation benefits from the FPGA parallelism to drastically reduce the memory requirements of the MSLD from two images to a few values. The architecture is optimized in terms of resource utilization by reusing the computations and optimizing the bit-width. The throughput is increased by designing fully pipelined functional units. The architecture is capable of achieving a comparable accuracy to its software implementation but 70× faster for low resolution images. For high resolution images, it achieves an acceleration by a factor of 323×.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度线性检测器的视网膜血管分割方法
本文提出了一种基于Zynq FPGA的多尺度线检测器(Multi-Scale Line Detector, MSLD)算法的高效内存架构,用于眼底图像中视网膜血管的实时检测。这种实现得益于FPGA的并行性,可以将MSLD的内存需求从两个映像大幅减少到几个值。通过对计算的重用和位宽的优化,从资源利用率方面对体系结构进行了优化。通过设计完全流水线的功能单元,提高了吞吐量。该架构能够达到与其软件实现相当的精度,但对于低分辨率图像要快70倍。对于高分辨率图像,它可以实现323倍的加速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time FPGA implementation of the Semi-Global Matching stereo vision algorithm for a 4K/UHD video stream Brain Blood Vessel Segmentation in Hyperspectral Images Through Linear Operators SCAPE: HW-Aware Clustering of Dataflow Actors for Tunable Scheduling Complexity Deep Recurrent Neural Network Performing Spectral Recurrence on Hyperspectral Images for Brain Tissue Classification TaPaFuzz - An FPGA-Accelerated Framework for RISC-V IoT Graybox Fuzzing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1