Jakob Lenz, M. Statz, K. Watanabe, T. Taniguchi, F. Ortmann, R. Weitz
{"title":"Charge transport in single polymer fiber transistors in the sub-100 nm regime: temperature dependence and Coulomb blockade","authors":"Jakob Lenz, M. Statz, K. Watanabe, T. Taniguchi, F. Ortmann, R. Weitz","doi":"10.1088/2515-7639/aca82f","DOIUrl":null,"url":null,"abstract":"Even though charge transport in semiconducting polymers is of relevance for a number of potential applications in (opto-)electronic devices, the fundamental mechanism of how charges are transported through organic polymers that are typically characterized by a complex nanostructure is still open. One of the challenges which we address here, is how to gain controllable experimental access to charge transport at the sub-100 nm lengthscale. To this end charge transport in single poly(diketopyrrolopyrrole-terthiophene) fiber transistors, employing two different solid gate dielectrics, a hybrid Al2O3/self-assembled monolayer and hexagonal boron nitride, is investigated in the sub-50 nm regime using electron-beam contact patterning. The electrical characteristics exhibit near ideal behavior at room temperature which demonstrates the general feasibility of the nanoscale contacting approach, even though the channels are only a few nanometers in width. At low temperatures, we observe nonlinear behavior in the current–voltage characteristics in the form of Coulomb diamonds which can be explained by the formation of an array of multiple quantum dots at cryogenic temperatures.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"115 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/aca82f","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2
Abstract
Even though charge transport in semiconducting polymers is of relevance for a number of potential applications in (opto-)electronic devices, the fundamental mechanism of how charges are transported through organic polymers that are typically characterized by a complex nanostructure is still open. One of the challenges which we address here, is how to gain controllable experimental access to charge transport at the sub-100 nm lengthscale. To this end charge transport in single poly(diketopyrrolopyrrole-terthiophene) fiber transistors, employing two different solid gate dielectrics, a hybrid Al2O3/self-assembled monolayer and hexagonal boron nitride, is investigated in the sub-50 nm regime using electron-beam contact patterning. The electrical characteristics exhibit near ideal behavior at room temperature which demonstrates the general feasibility of the nanoscale contacting approach, even though the channels are only a few nanometers in width. At low temperatures, we observe nonlinear behavior in the current–voltage characteristics in the form of Coulomb diamonds which can be explained by the formation of an array of multiple quantum dots at cryogenic temperatures.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.