Functional magnetic resonance imaging: fuzzy inference analysis

Bouharati Imane, Bouharati Khaoula, Bouharati Saddek, H. Mokhtar
{"title":"Functional magnetic resonance imaging: fuzzy inference analysis","authors":"Bouharati Imane, Bouharati Khaoula, Bouharati Saddek, H. Mokhtar","doi":"10.15761/rdi.1000111","DOIUrl":null,"url":null,"abstract":"Aim: Nowadays, functional MRI is widely used in the study of brain functions. If it has the advantage of being non-invasive and allows delimiting the zones that are activated at each stimulus in 3D, it presents several deficiencies. On the psychotic studies, the zones which activate induce the analyst in error in view of the complexity and the differences between individuals and their states of anxiety. Even minimal movements of the head influence the result; the response of the vascular system signal is delayed after the stimulus...etc. A heavy numerical processing in particular in statistical analyzes is necessary to refine the images. Despite this, difficulties persist. Method: In this study, a fuzzy logic system in this analysis is proposed. Viewing the complexity of the system, the variables that define the constructed image are considered as inaccurate variables and therefore fuzzy variable. The motor and emotional stimulus, the parasites movements, the anxiety state are considerate as inputs system. The quality of image constructed is the output system. The data base constructed permits adjusting input variables for optimal image. Conclusion: The proposed system allows defining the optimal interaction of the different factors for an optimal image. Considering the variables of input and output as fuzzy variables thus imprecise, this makes it possible to overcome the deficiencies of the system Correspondence to: Bouharati Saddek, Laboratory of intelligent systems UFAS Setif1 University, Setif, Algeira; Tel: +213771816302; E-mail: sbouharati@univ-setif.dz","PeriodicalId":11275,"journal":{"name":"Diagnostic imaging","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15761/rdi.1000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Aim: Nowadays, functional MRI is widely used in the study of brain functions. If it has the advantage of being non-invasive and allows delimiting the zones that are activated at each stimulus in 3D, it presents several deficiencies. On the psychotic studies, the zones which activate induce the analyst in error in view of the complexity and the differences between individuals and their states of anxiety. Even minimal movements of the head influence the result; the response of the vascular system signal is delayed after the stimulus...etc. A heavy numerical processing in particular in statistical analyzes is necessary to refine the images. Despite this, difficulties persist. Method: In this study, a fuzzy logic system in this analysis is proposed. Viewing the complexity of the system, the variables that define the constructed image are considered as inaccurate variables and therefore fuzzy variable. The motor and emotional stimulus, the parasites movements, the anxiety state are considerate as inputs system. The quality of image constructed is the output system. The data base constructed permits adjusting input variables for optimal image. Conclusion: The proposed system allows defining the optimal interaction of the different factors for an optimal image. Considering the variables of input and output as fuzzy variables thus imprecise, this makes it possible to overcome the deficiencies of the system Correspondence to: Bouharati Saddek, Laboratory of intelligent systems UFAS Setif1 University, Setif, Algeira; Tel: +213771816302; E-mail: sbouharati@univ-setif.dz
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能磁共振成像:模糊推理分析
目的:目前,功能磁共振成像在脑功能研究中得到了广泛的应用。如果它具有非侵入性的优点,并且可以在3D中划分每次刺激激活的区域,那么它也存在一些不足。在精神病研究中,由于个体及其焦虑状态之间的复杂性和差异,激活的区域导致了分析师的错误。即使是最小的头部运动也会影响结果;刺激后血管系统信号的反应延迟…大量的数值处理,特别是在统计分析中,是细化图像所必需的。尽管如此,困难依然存在。方法:在本研究中,提出了一个模糊逻辑分析系统。考虑到系统的复杂性,定义构造图像的变量被认为是不准确的变量,因此是模糊变量。运动和情绪刺激、寄生虫运动、焦虑状态被视为输入系统。图像构建的质量是输出系统。构建的数据库允许调整输入变量以获得最优图像。结论:所提出的系统可以定义不同因素的最佳交互作用,以获得最佳图像。考虑到输入和输出的变量是模糊变量,因此不精确,这使得有可能克服系统的缺陷通信:Bouharati Saddek,智能系统实验室UFAS Setif1大学,Setif,阿尔及利亚;电话:+ 213771816302;电子邮件:sbouharati@univ-setif.dz
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Patient with Abdominal Pain Following Routine Colonoscopy Breast conserving surgery and intra-operative specimen radiography: Margin assessment by the surgeon or the radiologist? Ameboma versus colorectal cancer: a case report CT radiation dose optimization and reduction for routine head, chest and abdominal CT examination The usefulness of preoperative MRI in synchronous bilateral breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1