PLANT SPECIE CLASSIFICATION USING SINUOSITY COEFFICIENTS OF LEAVES

IF 0.8 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Image Analysis & Stereology Pub Date : 2018-07-09 DOI:10.5566/IAS.1821
J. R. Kala, Serestina Viriri
{"title":"PLANT SPECIE CLASSIFICATION USING SINUOSITY COEFFICIENTS OF LEAVES","authors":"J. R. Kala, Serestina Viriri","doi":"10.5566/IAS.1821","DOIUrl":null,"url":null,"abstract":"Forests are the lungs of our planet. Conserving the plants may require the development of an automated system that will identify plants using leaf features such as shape, color, and texture. In this paper, a leaf shape descriptor based on sinuosity coefficients is proposed. The sinuosity coefficients are defined using the sinuosity measure, which is a measure expressing the degree of meandering of a curve. The initial empirical experiments performed on the LeafSnap dataset on the usage of four sinuosity coefficients to characterize the leaf images using the Radial Basis Function Neural Network (RBF) and Multilayer Perceptron (MLP) classifiers achieved accurate classification rates of 88% and 65%, respectively. The proposed feature extraction technique is further enhanced through the addition of leaf geometrical features, and the accurate classification rates of 93% and 82% were achieved using RBF and MLP, respectively. The overall results achieved showed that the proposed feature extraction technique based on the sinuosity coefficients of leaves, complemented with geometrical features improve the accuracy rate of plant classification using leaf recognition.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"41 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.1821","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

Forests are the lungs of our planet. Conserving the plants may require the development of an automated system that will identify plants using leaf features such as shape, color, and texture. In this paper, a leaf shape descriptor based on sinuosity coefficients is proposed. The sinuosity coefficients are defined using the sinuosity measure, which is a measure expressing the degree of meandering of a curve. The initial empirical experiments performed on the LeafSnap dataset on the usage of four sinuosity coefficients to characterize the leaf images using the Radial Basis Function Neural Network (RBF) and Multilayer Perceptron (MLP) classifiers achieved accurate classification rates of 88% and 65%, respectively. The proposed feature extraction technique is further enhanced through the addition of leaf geometrical features, and the accurate classification rates of 93% and 82% were achieved using RBF and MLP, respectively. The overall results achieved showed that the proposed feature extraction technique based on the sinuosity coefficients of leaves, complemented with geometrical features improve the accuracy rate of plant classification using leaf recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用叶片弯曲系数进行植物种类分类
森林是地球的肺。保护植物可能需要开发一种自动化系统,该系统将通过叶子的形状、颜色和纹理等特征来识别植物。本文提出了一种基于曲率系数的叶形描述子。曲度系数是用曲度度量来定义的,曲度度量是表示曲线弯曲程度的度量。在LeafSnap数据集上,使用径向基函数神经网络(RBF)和多层感知器(MLP)分类器使用4个正弦系数对树叶图像进行表征的初步经验实验,分别获得了88%和65%的准确分类率。通过加入叶片几何特征,进一步增强了特征提取技术,RBF和MLP的分类准确率分别达到93%和82%。结果表明,基于叶片弯曲系数的特征提取技术与几何特征相结合,提高了基于叶片识别的植物分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Image Analysis & Stereology
Image Analysis & Stereology MATERIALS SCIENCE, MULTIDISCIPLINARY-MATHEMATICS, APPLIED
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.
期刊最新文献
PU-NET DEEP LEARNING ARCHITECTURE FOR GLIOMAS BRAIN TUMOUR SEGMENTATION IN MAGNETIC RESONANCE IMAGES Sample-balanced and IoU-guided anchor-free visual tracking Existence and approximation of densities of chord length- and cross section area distributions IMPROVEMENT PROCEDURE FOR IMAGE SEGMENTATION OF FRUITS AND VEGETABLES BASED ON THE OTSU METHOD. A Completed Multiply Threshold Encoding Pattern for Texture Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1