Deep Learning Based Hand Wrist Segmentation using Mask R-CNN

GokulaKrishnan Elumalai, M. Ganesan
{"title":"Deep Learning Based Hand Wrist Segmentation using Mask R-CNN","authors":"GokulaKrishnan Elumalai, M. Ganesan","doi":"10.34028/iajit/19/5/10","DOIUrl":null,"url":null,"abstract":"Deep learning is one of the trending technologies in computer vision to identify and classify objects. Deep learning is a subset of Machine Learning and Artificial Intelligence. Detecting and classifying the object was a challenging task in traditional computer vision techniques, and now there are numerous deep learning Techniques scaled up to achieve this. The primary purpose of the research is to detect and segment the human hand wrist region using deep learning methods. This research is widespread to deep learning enthusiasts who needs to segment custom objects using instance segmentation. We demonstrated a segmented hand wrist using the Mask Regional Convolutional Neural Network (R-CNN) technique with an average accuracy of 99.73%. This work also compares the performance evaluation of baseline and custom Hand Wrist Mask R-CNN. The achieved validation class loss is 0.00866 training and 0.02736 validation; both the values are comparatively deficient compared with baseline Mask R-CNN.","PeriodicalId":13624,"journal":{"name":"Int. Arab J. Inf. Technol.","volume":"47 1","pages":"785-792"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. Arab J. Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/19/5/10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning is one of the trending technologies in computer vision to identify and classify objects. Deep learning is a subset of Machine Learning and Artificial Intelligence. Detecting and classifying the object was a challenging task in traditional computer vision techniques, and now there are numerous deep learning Techniques scaled up to achieve this. The primary purpose of the research is to detect and segment the human hand wrist region using deep learning methods. This research is widespread to deep learning enthusiasts who needs to segment custom objects using instance segmentation. We demonstrated a segmented hand wrist using the Mask Regional Convolutional Neural Network (R-CNN) technique with an average accuracy of 99.73%. This work also compares the performance evaluation of baseline and custom Hand Wrist Mask R-CNN. The achieved validation class loss is 0.00866 training and 0.02736 validation; both the values are comparatively deficient compared with baseline Mask R-CNN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的手部腕部分割,使用掩模R-CNN
深度学习是计算机视觉中目标识别和分类的发展趋势之一。深度学习是机器学习和人工智能的一个子集。在传统的计算机视觉技术中,检测和分类对象是一项具有挑战性的任务,现在有许多深度学习技术扩展到实现这一目标。本研究的主要目的是利用深度学习方法对人的手腕区域进行检测和分割。这项研究广泛应用于需要使用实例分割来分割自定义对象的深度学习爱好者。我们展示了使用Mask区域卷积神经网络(R-CNN)技术进行腕部分割,平均准确率为99.73%。本工作还比较了基线和自定义Hand - Wrist Mask R-CNN的性能评估。实现的验证类损失为0.00866训练和0.02736验证;与基线Mask R-CNN相比,这两个值都相对不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Energy Efficient Harvesting Technique for SDWSN using RF Transmitters with MISO Beamforming Incorporating triple attention and multi-scale pyramid network for underwater image enhancement Generative adversarial networks with data augmentation and multiple penalty areas for image synthesis MAPNEWS: a framework for aggregating and organizing online news articles Deep learning based mobilenet and multi-head attention model for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1