Improved particle swarm optimization and application to portfolio selection

M. Koshino, H. Murata, Haruhiko Kimura
{"title":"Improved particle swarm optimization and application to portfolio selection","authors":"M. Koshino, H. Murata, Haruhiko Kimura","doi":"10.1002/ECJC.20263","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) is a population-based stochastic optimization technique, inspired by the social behavior of birds (flocking) or fish (schooling), which is applied to various problems in the optimization of nonlinear systems. The inertia weights approach (IWA) and the constriction factor approach (CFA) are improved methods in PSO. The IWA searches the problem space globally in the early steps, and finally searches locally near the optimal solution. CFA is a method that introduces a new parameter into velocity update equation. \n \n \n \nThis paper proposes a combination of IWA and CFA (the Inertia Weights Constriction Factor Approach: IWCFA), and PSOrank, whose objective is the ranking of individuals in the population. These two proposed methods are applied to function optimizations and to the portfolio selection problem, which is a typical mathematical problem in securities finance. The results show that the original PSO finds better solutions than the GA, and the proposed method finds better solutions than the original PSO. © 2006 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(3): 13–25, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20263","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"64 1","pages":"13-25"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ECJC.20263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Particle swarm optimization (PSO) is a population-based stochastic optimization technique, inspired by the social behavior of birds (flocking) or fish (schooling), which is applied to various problems in the optimization of nonlinear systems. The inertia weights approach (IWA) and the constriction factor approach (CFA) are improved methods in PSO. The IWA searches the problem space globally in the early steps, and finally searches locally near the optimal solution. CFA is a method that introduces a new parameter into velocity update equation. This paper proposes a combination of IWA and CFA (the Inertia Weights Constriction Factor Approach: IWCFA), and PSOrank, whose objective is the ranking of individuals in the population. These two proposed methods are applied to function optimizations and to the portfolio selection problem, which is a typical mathematical problem in securities finance. The results show that the original PSO finds better solutions than the GA, and the proposed method finds better solutions than the original PSO. © 2006 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(3): 13–25, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20263
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进粒子群算法及其在投资组合选择中的应用
粒子群优化(PSO)是一种基于种群的随机优化技术,它的灵感来自于鸟(群集)或鱼(鱼群)的社会行为,并应用于非线性系统优化中的各种问题。惯性权重法(IWA)和收缩因子法(CFA)是PSO中的改进方法。该算法在前期对问题空间进行全局搜索,最后在最优解附近局部搜索。CFA是在速度更新方程中引入新参数的一种方法。本文提出了一种结合IWA和CFA(惯性权重收缩因子法:IWCFA)和PSOrank的方法,其目标是在种群中对个体进行排名。这两种方法分别应用于函数优化和证券金融中典型的数学问题组合选择问题。结果表明,原粒子群算法的解优于遗传算法,所提方法的解优于原粒子群算法。©2006 Wiley期刊公司电子工程学报,2009,31 (3):393 - 393;在线发表于Wiley InterScience (www.interscience.wiley.com)。DOI 10.1002 / ecjc.20263
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward systematic generation of 3COL instances based on minimal unsolvable structures Two computational algorithms for deriving phase equations: Equivalence and some cautions A data‐driven processor for alleviating bottlenecks of sequential programs and maintaining multiprocessing capability Robust and adaptive merge of multiple range images with photometric attribute Autostereoscopic visualization of volume data using computer‐generated holograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1