Flexible and Robust Particle Tempering for State Space Models

IF 2 Q2 ECONOMICS Econometrics and Statistics Pub Date : 2025-01-01 DOI:10.1016/j.ecosta.2022.09.003
David Gunawan , Robert Kohn , Minh Ngoc Tran
{"title":"Flexible and Robust Particle Tempering for State Space Models","authors":"David Gunawan ,&nbsp;Robert Kohn ,&nbsp;Minh Ngoc Tran","doi":"10.1016/j.ecosta.2022.09.003","DOIUrl":null,"url":null,"abstract":"<div><div><span><span><span><span>Density tempering (also called density annealing) is a sequential Monte Carlo approach to </span>Bayesian inference<span> for general state models which is an alternative to Markov chain Monte Carlo. When applied to state space models, it moves a collection of parameters and latent states (which are called particles) through a number of stages, with each stage having its own </span></span>target distribution<span>. The particles are initially generated from a distribution that is easy to sample from, e.g. the prior; the target at the final stage is the posterior distribution. Tempering is usually carried out either in batch mode, involving all the data at each stage, or sequentially with observations added at each stage, which is called data tempering. Efficient Markov moves for generating the parameters and states for each stage of particle based density tempering are proposed. This allows the proposed SMC methods to increase (scale up) the number of parameters and states that can be handled. Most current methods use a pseudo-marginal Markov move step with the states “integrated out”, and the parameters generated by a </span></span>random walk<span><span> proposal; although this strategy is general, it can be very inefficient when the states or parameters are high dimensional. By adding batch tempering at each stage, previous methods are extended to make data tempering more robust to outliers and structural changes for models with intractable likelihoods. The performance of the proposed methods is evaluated using univariate </span>stochastic volatility models with outliers and structural breaks, and high dimensional factor stochastic volatility models having many parameters and many latent states.</span></span><span><span><sup>1</sup></span></span></div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"33 ","pages":"Pages 35-55"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306222000843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Density tempering (also called density annealing) is a sequential Monte Carlo approach to Bayesian inference for general state models which is an alternative to Markov chain Monte Carlo. When applied to state space models, it moves a collection of parameters and latent states (which are called particles) through a number of stages, with each stage having its own target distribution. The particles are initially generated from a distribution that is easy to sample from, e.g. the prior; the target at the final stage is the posterior distribution. Tempering is usually carried out either in batch mode, involving all the data at each stage, or sequentially with observations added at each stage, which is called data tempering. Efficient Markov moves for generating the parameters and states for each stage of particle based density tempering are proposed. This allows the proposed SMC methods to increase (scale up) the number of parameters and states that can be handled. Most current methods use a pseudo-marginal Markov move step with the states “integrated out”, and the parameters generated by a random walk proposal; although this strategy is general, it can be very inefficient when the states or parameters are high dimensional. By adding batch tempering at each stage, previous methods are extended to make data tempering more robust to outliers and structural changes for models with intractable likelihoods. The performance of the proposed methods is evaluated using univariate stochastic volatility models with outliers and structural breaks, and high dimensional factor stochastic volatility models having many parameters and many latent states.1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
状态空间模型的柔性鲁棒粒子回火
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
期刊最新文献
Editorial Board Delayed Monetary Policy Effects in a Multi-Regime Cointegrated VAR(MRCIVAR) Threshold Autoregressive Nearest-Neighbour Models for Claims Reserving Inference in mixed causal and noncausal models with generalized Student’s t-distributions Multiplicative Error Models: 20 years on
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1