Hyperspectral image classification using a parallel implementation of the linear SVM on a Massively Parallel Processor Array (MPPA) platform

D. Madroñal, R. Lazcano, H. Fabelo, S. Ortega, G. Callicó, E. Juárez, C. Sanz
{"title":"Hyperspectral image classification using a parallel implementation of the linear SVM on a Massively Parallel Processor Array (MPPA) platform","authors":"D. Madroñal, R. Lazcano, H. Fabelo, S. Ortega, G. Callicó, E. Juárez, C. Sanz","doi":"10.1109/DASIP.2016.7853812","DOIUrl":null,"url":null,"abstract":"In this paper, a study of the parallel exploitation of a Support Vector Machine (SVM) classifier with a linear kernel running on a Massively Parallel Processor Array platform is exposed. This system joins 256 cores working in parallel and grouped in 16 different clusters. The main objective of the research has been to develop an optimal implementation of the SVM classifier on a MPPA platform whilst the architectural bottlenecks of the hyperspectral image classifier are analyzed. Experimenting with medical images, the parallelization of the SVM classification has been conducted using three strategies: i) single- and multi-core processing, ii) single- and multi-cluster analysis and iii) single- and double-buffer execution. As a result, an average core processing speedup of 11.8 has been achieved when parallelizing the SVM classification process in a single cluster. On the contrary, since data communication accounts for 34.7% of the total execution time in the sequential case, the total speedup is upper-bounded to 2.9. Using a double-buffer methodology, a total speedup of 2.84 has been achieved on a single cluster. At last, the feasibility of a portable version of a linear SVM has been demonstrated.","PeriodicalId":6494,"journal":{"name":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"65 1","pages":"154-160"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2016.7853812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a study of the parallel exploitation of a Support Vector Machine (SVM) classifier with a linear kernel running on a Massively Parallel Processor Array platform is exposed. This system joins 256 cores working in parallel and grouped in 16 different clusters. The main objective of the research has been to develop an optimal implementation of the SVM classifier on a MPPA platform whilst the architectural bottlenecks of the hyperspectral image classifier are analyzed. Experimenting with medical images, the parallelization of the SVM classification has been conducted using three strategies: i) single- and multi-core processing, ii) single- and multi-cluster analysis and iii) single- and double-buffer execution. As a result, an average core processing speedup of 11.8 has been achieved when parallelizing the SVM classification process in a single cluster. On the contrary, since data communication accounts for 34.7% of the total execution time in the sequential case, the total speedup is upper-bounded to 2.9. Using a double-buffer methodology, a total speedup of 2.84 has been achieved on a single cluster. At last, the feasibility of a portable version of a linear SVM has been demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于大规模并行处理器阵列(MPPA)平台的线性支持向量机的高光谱图像分类
本文研究了在大规模并行处理器阵列平台上运行的线性核支持向量机(SVM)分类器的并行开发。该系统连接256个并行工作的内核,并分组在16个不同的集群中。本研究的主要目标是在MPPA平台上开发SVM分类器的最佳实现,同时分析了高光谱图像分类器的架构瓶颈。以医学图像为实验对象,采用三种策略对SVM分类进行并行化:i)单核和多核处理,ii)单聚类和多聚类分析,iii)单缓冲和双缓冲执行。因此,在单个集群中并行化SVM分类过程时,实现了11.8的平均核心处理加速。相反,在顺序情况下,由于数据通信占总执行时间的34.7%,因此总加速上限为2.9。使用双缓冲区方法,在单个集群上实现了2.84的总加速。最后,验证了便携式线性支持向量机的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time FPGA implementation of the Semi-Global Matching stereo vision algorithm for a 4K/UHD video stream Brain Blood Vessel Segmentation in Hyperspectral Images Through Linear Operators SCAPE: HW-Aware Clustering of Dataflow Actors for Tunable Scheduling Complexity Deep Recurrent Neural Network Performing Spectral Recurrence on Hyperspectral Images for Brain Tissue Classification TaPaFuzz - An FPGA-Accelerated Framework for RISC-V IoT Graybox Fuzzing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1