Heterogeneous Graph Convolutional Neural Network via Hodge-Laplacian for Brain Functional Data

Jinghan Huang, M. Chung, A. Qiu
{"title":"Heterogeneous Graph Convolutional Neural Network via Hodge-Laplacian for Brain Functional Data","authors":"Jinghan Huang, M. Chung, A. Qiu","doi":"10.48550/arXiv.2302.09323","DOIUrl":null,"url":null,"abstract":"This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We introduce a generic formulation of spectral filters on heterogeneous graphs by introducing the $k-th$ Hodge-Laplacian (HL) operator. In particular, we propose Laguerre polynomial approximations of HL spectral filters and prove that their spatial localization on graphs is related to the polynomial order. Furthermore, based on the bijection property of boundary operators on simplex graphs, we introduce a generic topological graph pooling (TGPool) method that can be used at any dimensional simplices. This study designs HL-node, HL-edge, and HL-HGCNN neural networks to learn signal representation at a graph node, edge levels, and both, respectively. Our experiments employ fMRI from the Adolescent Brain Cognitive Development (ABCD; n=7693) to predict general intelligence. Our results demonstrate the advantage of the HL-edge network over the HL-node network when functional brain connectivity is considered as features. The HL-HGCNN outperforms the state-of-the-art graph neural networks (GNNs) approaches, such as GAT, BrainGNN, dGCN, BrainNetCNN, and Hypergraph NN. The functional connectivity features learned from the HL-HGCNN are meaningful in interpreting neural circuits related to general intelligence.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"65 1","pages":"278-290"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information processing in medical imaging : proceedings of the ... conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.09323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We introduce a generic formulation of spectral filters on heterogeneous graphs by introducing the $k-th$ Hodge-Laplacian (HL) operator. In particular, we propose Laguerre polynomial approximations of HL spectral filters and prove that their spatial localization on graphs is related to the polynomial order. Furthermore, based on the bijection property of boundary operators on simplex graphs, we introduce a generic topological graph pooling (TGPool) method that can be used at any dimensional simplices. This study designs HL-node, HL-edge, and HL-HGCNN neural networks to learn signal representation at a graph node, edge levels, and both, respectively. Our experiments employ fMRI from the Adolescent Brain Cognitive Development (ABCD; n=7693) to predict general intelligence. Our results demonstrate the advantage of the HL-edge network over the HL-node network when functional brain connectivity is considered as features. The HL-HGCNN outperforms the state-of-the-art graph neural networks (GNNs) approaches, such as GAT, BrainGNN, dGCN, BrainNetCNN, and Hypergraph NN. The functional connectivity features learned from the HL-HGCNN are meaningful in interpreting neural circuits related to general intelligence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Hodge-Laplacian的脑功能数据异构图卷积神经网络
本研究提出了一种新的异构图卷积神经网络(HGCNN)来处理区域和跨区域水平的复杂脑功能磁共振数据。通过引入第k阶霍奇-拉普拉斯算子,给出了异质图上光谱滤波器的一般公式。特别地,我们提出了HL光谱滤波器的Laguerre多项式近似,并证明了它们在图上的空间定位与多项式阶数有关。在此基础上,基于单纯形图边界算子的双射性质,提出了一种适用于任意维度单纯图的通用拓扑图池化方法(TGPool)。本研究设计了HL-node、HL-edge和HL-HGCNN神经网络,分别在图节点、边水平和两者上学习信号表示。我们的实验使用了青少年大脑认知发展(ABCD;N =7693)来预测一般智力。我们的研究结果表明,当脑功能连接被视为特征时,HL-edge网络优于HL-node网络。HL-HGCNN优于GAT、BrainGNN、dGCN、BrainNetCNN和Hypergraph NN等最先进的图神经网络(gnn)方法。从HL-HGCNN中学习到的功能连接特征对于解释与一般智能相关的神经回路具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vicinal Feature Statistics Augmentation for Federated 3D Medical Volume Segmentation Better Generalization of White Matter Tract Segmentation to Arbitrary Datasets with Scaled Residual Bootstrap Unsupervised Adaptation of Polyp Segmentation Models via Coarse-to-Fine Self-Supervision Weakly Semi-supervised Detection in Lung Ultrasound Videos Bootstrapping Semi-supervised Medical Image Segmentation with Anatomical-Aware Contrastive Distillation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1