{"title":"Design of Q-filters for disturbance observers via BMI approach","authors":"Jung-Su Kim, J. Back, Gyunghoon Park","doi":"10.1109/ICCAS.2014.6987741","DOIUrl":null,"url":null,"abstract":"The type-k disturbance observer, also known as high order disturbance observer, is a robust output feedback controller which can reject polynomial-in-time disturbances exactly and at the same time unmodeled disturbances approximately. To ensure the robust stability of the closed-loop system, the key component of the controller called Q-filter should be designed appropriately. In this paper, we formulate the design problem in terms of a set of bilinear matrix inequalities so that the coefficients of Q-filters are chosen simultaneously. The solution from the proposed method can be less conservative compared to the recursive design procedure developed recently.","PeriodicalId":6525,"journal":{"name":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","volume":"7 1","pages":"1197-1200"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2014.6987741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The type-k disturbance observer, also known as high order disturbance observer, is a robust output feedback controller which can reject polynomial-in-time disturbances exactly and at the same time unmodeled disturbances approximately. To ensure the robust stability of the closed-loop system, the key component of the controller called Q-filter should be designed appropriately. In this paper, we formulate the design problem in terms of a set of bilinear matrix inequalities so that the coefficients of Q-filters are chosen simultaneously. The solution from the proposed method can be less conservative compared to the recursive design procedure developed recently.