{"title":"Variation of canonical height for\\break Fatou points on ℙ1","authors":"Laura Demarco, Niki Myrto Mavraki","doi":"10.1515/crelle-2022-0078","DOIUrl":null,"url":null,"abstract":"Abstract Let f : ℙ 1 → ℙ 1 {f:\\mathbb{P}^{1}\\to\\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K. For each point a ∈ ℙ 1 ( k ) {a\\in\\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ( ℚ ¯ ) {t\\in X(\\overline{\\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X; i.e., we prove the existence of a ℚ {\\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ( a t ) - h D ( t ) {t\\mapsto\\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ( ℚ ¯ ) {X(\\overline{\\mathbb{Q}})} for any choice of Weil height associated to D. We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ( a t ) {t\\mapsto\\hat{\\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ( ℂ v ) {X(\\mathbb{C}_{v})} , at each place v of the number field K. These results were known for polynomial maps f and all points a ∈ ℙ 1 ( k ) {a\\in\\mathbb{P}^{1}(k)} without the stability hypothesis, [21, 14], and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ( k ) {a\\in\\mathbb{P}^{1}(k)} . [32, 29]. Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\\tilde{f}:X\\times\\mathbb{P}^{1}\\dashrightarrow X\\times\\mathbb{P}^{1}} over K; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k, where the local canonical height λ ^ f , γ ( a ) {\\hat{\\lambda}_{f,\\gamma}(a)} can be computed as an intersection number.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"5 1","pages":"183 - 220"},"PeriodicalIF":1.2000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0078","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K. For each point a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ( a t ) - h D ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D. We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K. These results were known for polynomial maps f and all points a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis, [21, 14], and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29]. Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k, where the local canonical height λ ^ f , γ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.