N. Kudo, T. Kamataki, K. Yamamoto, H. Onozuka, T. Mikami, A. Kitabatake, Y. Ito, H. Kanda
{"title":"Ultrasound attenuation measurement of tissue in frequency range 2.5-40 MHz using a multi-resonance transducer","authors":"N. Kudo, T. Kamataki, K. Yamamoto, H. Onozuka, T. Mikami, A. Kitabatake, Y. Ito, H. Kanda","doi":"10.1109/ULTSYM.1997.661789","DOIUrl":null,"url":null,"abstract":"The authors developed a measurement system of ultrasound attenuation in the frequency range of 2.5 to 40 MHz and measured the ultrasound attenuation coefficients of normal, infarcted, and dilated cardiomyopathy samples of a human formalized myocardium. Results of attenuation measurements showed that the attenuation coefficients increased proportionally to the n-th power of frequency in the measured frequency range. Attenuation coefficients in the myocardium specimens increased proportionally to the 1.3 power for the infarction and 1.2 power for the dilated cardiomyopathy of frequency, respectively, while the attenuation coefficient increased proportionally to the 1.6 power for the normal myocardium. These results suggest that an exponent of frequency-dependent attenuation could be used as an index of tissue characterization.","PeriodicalId":6369,"journal":{"name":"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1997.661789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The authors developed a measurement system of ultrasound attenuation in the frequency range of 2.5 to 40 MHz and measured the ultrasound attenuation coefficients of normal, infarcted, and dilated cardiomyopathy samples of a human formalized myocardium. Results of attenuation measurements showed that the attenuation coefficients increased proportionally to the n-th power of frequency in the measured frequency range. Attenuation coefficients in the myocardium specimens increased proportionally to the 1.3 power for the infarction and 1.2 power for the dilated cardiomyopathy of frequency, respectively, while the attenuation coefficient increased proportionally to the 1.6 power for the normal myocardium. These results suggest that an exponent of frequency-dependent attenuation could be used as an index of tissue characterization.