Curve number for runoff estimating in interlocking concrete pavement

Pub Date : 2022-01-01 DOI:10.1590/2318-0331.272220220035
M. Lucas, Gustavo Bonfim Jodas, L. E. Bertotto, P. T. S. Oliveira, Alessandro Bail
{"title":"Curve number for runoff estimating in interlocking concrete pavement","authors":"M. Lucas, Gustavo Bonfim Jodas, L. E. Bertotto, P. T. S. Oliveira, Alessandro Bail","doi":"10.1590/2318-0331.272220220035","DOIUrl":null,"url":null,"abstract":"ABSTRACT Curve Number (CN) values estimating from rainfall-runoff data is an attractive topic in hydrology. However, CN values are lacking for Interlocking Concrete Pavement (ICP) material, mainly when seated over bare soil (not over a permeable pavement structure). Here, we compute CN values for the ICP seated over clayey soil using measured rainfall and infiltration capacity data. We estimated runoff ( Q) using 32 events of 24-hour rainfall depth ( P 24) and an infiltration model, assuming a hortonian runoff process. To estimate the CN for each P 24 event, we used the rainfall-runoff incremental approach. Overall, we obtained CN values ranging from 52 to 63. The best CN values to estimate Q were equal to 52.2 ( R M S E = 9.09 mm and R 2 = 0.03) and 60.1 ( R M S E = 1.45 mm and R 2 = 0.97), considering natural- and rank-ordered P 24- Q data, respectively. Our results indicate that it is more suitable to use the initial abstraction ratio ( λ) equal to 0.20 for the ICP material. The findings provide a better understanding of the rainfall-runoff process in ICP and help improve the design of stormwater drainage systems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2318-0331.272220220035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Curve Number (CN) values estimating from rainfall-runoff data is an attractive topic in hydrology. However, CN values are lacking for Interlocking Concrete Pavement (ICP) material, mainly when seated over bare soil (not over a permeable pavement structure). Here, we compute CN values for the ICP seated over clayey soil using measured rainfall and infiltration capacity data. We estimated runoff ( Q) using 32 events of 24-hour rainfall depth ( P 24) and an infiltration model, assuming a hortonian runoff process. To estimate the CN for each P 24 event, we used the rainfall-runoff incremental approach. Overall, we obtained CN values ranging from 52 to 63. The best CN values to estimate Q were equal to 52.2 ( R M S E = 9.09 mm and R 2 = 0.03) and 60.1 ( R M S E = 1.45 mm and R 2 = 0.97), considering natural- and rank-ordered P 24- Q data, respectively. Our results indicate that it is more suitable to use the initial abstraction ratio ( λ) equal to 0.20 for the ICP material. The findings provide a better understanding of the rainfall-runoff process in ICP and help improve the design of stormwater drainage systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
互锁混凝土路面径流估算的曲线数
摘要利用降雨径流数据估算曲线数(CN)值是水文学研究中一个有吸引力的课题。然而,联锁混凝土路面(ICP)材料缺乏CN值,主要是在裸露的土壤上(而不是在透水的路面结构上)。在这里,我们使用测量的降雨量和入渗能力数据计算粘土土壤上ICP的CN值。我们使用32个24小时降雨深度事件(p24)和一个入渗模型来估计径流(Q),假设径流过程是霍顿式的。为了估计每个p24事件的CN,我们使用了降雨-径流增量方法。总的来说,我们得到的CN值在52到63之间。考虑自然排序和排序排序的p24 - Q数据,估计Q的最佳CN值分别为52.2 (R M S E = 9.09 mm, r2 = 0.03)和60.1 (R M S E = 1.45 mm, r2 = 0.97)。我们的结果表明,对于ICP材料,使用初始抽象比(λ) = 0.20更为合适。这些发现有助于更好地理解ICP的降雨径流过程,并有助于改进雨水排水系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1