Trojan Detection System Using Machine Learning Approach

Mohd Faizal Ab Razak, M. Jaya, Z. Ismail, Ahmad Firdaus
{"title":"Trojan Detection System Using Machine Learning Approach","authors":"Mohd Faizal Ab Razak, M. Jaya, Z. Ismail, Ahmad Firdaus","doi":"10.24002/ijis.v5i1.5673","DOIUrl":null,"url":null,"abstract":"Malware attack cases continue to rise in our current day. The Trojan attack, which may be extremely destructive by unlawfully controlling other users' computers in order to steal their data. As a result, Trojan horse detection is essential to identify the Trojan and limit Trojan attacks. In this study, we proposed a Trojan detection system that employed machine learning algorithms to detect Trojan horses within the system. A public dataset of Trojan horses that contain 2001 samples comprises of 1041 Trojan horses and 960 of benign is used to train the machine learning classification. In this paper, the Trojan detection system is trained using four types of classifiers which are Random Forest, J48, Decision Table and Naïve Bayes. WEKA is used for the execution of the classification process and performance analysis. The results indicated that the detection system trained with the Random Forest and Decision Table algorithms obtained the maximum level of accuracy.","PeriodicalId":34118,"journal":{"name":"Indonesian Journal of Information Systems","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/ijis.v5i1.5673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malware attack cases continue to rise in our current day. The Trojan attack, which may be extremely destructive by unlawfully controlling other users' computers in order to steal their data. As a result, Trojan horse detection is essential to identify the Trojan and limit Trojan attacks. In this study, we proposed a Trojan detection system that employed machine learning algorithms to detect Trojan horses within the system. A public dataset of Trojan horses that contain 2001 samples comprises of 1041 Trojan horses and 960 of benign is used to train the machine learning classification. In this paper, the Trojan detection system is trained using four types of classifiers which are Random Forest, J48, Decision Table and Naïve Bayes. WEKA is used for the execution of the classification process and performance analysis. The results indicated that the detection system trained with the Random Forest and Decision Table algorithms obtained the maximum level of accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习方法的木马检测系统
目前,恶意软件攻击案件持续上升。特洛伊木马攻击,通过非法控制其他用户的计算机来窃取他们的数据,这可能是极具破坏性的。因此,木马检测对于识别木马、限制木马攻击至关重要。在本研究中,我们提出了一种木马检测系统,该系统采用机器学习算法来检测系统内的木马。一个包含2001个样本的公共特洛伊木马数据集由1041个特洛伊木马和960个良性木马组成,用于训练机器学习分类。本文使用随机森林、J48、决策表和Naïve贝叶斯四种分类器对木马检测系统进行训练。WEKA用于执行分类过程和性能分析。结果表明,使用随机森林和决策表算法训练的检测系统获得了最高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊最新文献
The Implementation of Business Process Blockchain Technology Based of MSCWR SmartBox Model Priority Scheduling Implementation for Exam Schedule SPAM (Smart Patient Monitoring System) using Structural Similarity Index Measurement An Investigation of Nurses' Perceptions of the Usefulness and Easiness of Using Electronic Medical Records in Saudi Arabia: A Technology Acceptance Model Mobile Application for Medicinal Plants Recognition from Leaf Image Using Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1