Bio-Inspired Data Mining for Optimizing GPCR Function Identification

Pub Date : 2021-10-01 DOI:10.4018/IJCINI.20211001.OA40
Safia Bekhouche, Y. M. B. Ali
{"title":"Bio-Inspired Data Mining for Optimizing GPCR Function Identification","authors":"Safia Bekhouche, Y. M. B. Ali","doi":"10.4018/IJCINI.20211001.OA40","DOIUrl":null,"url":null,"abstract":"GPCRs are the largest family of cell surface receptors; many of them remain orphans. The GPCR functions prediction represents a very important bioinformatics task. It consists in assigning to the protein the corresponding functional class. This classification step requires a good protein representation method and a robust classification algorithm. However, the complexity of this task could be increased because of the great number of GPCRs features in most databases, which produce combinatorial explosion. In order to reduce complexity and optimize classification, the authors propose to use bio-inspired metaheuristics for both the feature selection and the choice of the best couple (feature extraction strategy [FES], data mining algorithm [DMA]). The authors propose to use the BAT algorithm for extracting the pertinent features and the genetic algorithm to choose the best couple. They compared the results they obtained with two existing algorithms. Experimental results indicate the efficiency of the proposed system.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCINI.20211001.OA40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

GPCRs are the largest family of cell surface receptors; many of them remain orphans. The GPCR functions prediction represents a very important bioinformatics task. It consists in assigning to the protein the corresponding functional class. This classification step requires a good protein representation method and a robust classification algorithm. However, the complexity of this task could be increased because of the great number of GPCRs features in most databases, which produce combinatorial explosion. In order to reduce complexity and optimize classification, the authors propose to use bio-inspired metaheuristics for both the feature selection and the choice of the best couple (feature extraction strategy [FES], data mining algorithm [DMA]). The authors propose to use the BAT algorithm for extracting the pertinent features and the genetic algorithm to choose the best couple. They compared the results they obtained with two existing algorithms. Experimental results indicate the efficiency of the proposed system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
生物启发数据挖掘优化GPCR功能鉴定
gpcr是最大的细胞表面受体家族;他们中的许多人仍然是孤儿。GPCR功能预测是一项非常重要的生物信息学任务。它包括给蛋白质分配相应的功能类。这个分类步骤需要一个好的蛋白质表示方法和一个鲁棒的分类算法。然而,由于大多数数据库中存在大量的gpcr特征,从而产生组合爆炸,这可能会增加任务的复杂性。为了降低分类的复杂性和优化分类,作者提出将生物启发的元启发式方法用于特征选择和最佳配对的选择(特征提取策略[FES],数据挖掘算法[DMA])。作者提出使用BAT算法提取相关特征,并使用遗传算法选择最佳特征对。他们将获得的结果与两种现有算法进行了比较。实验结果表明了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1