{"title":"Automating relatively complete verification of higher-order functional programs","authors":"Hiroshi Unno, Tachio Terauchi, N. Kobayashi","doi":"10.1145/2429069.2429081","DOIUrl":null,"url":null,"abstract":"We present an automated approach to relatively completely verifying safety (i.e., reachability) property of higher-order functional programs. Our contribution is two-fold. First, we extend the refinement type system framework employed in the recent work on (incomplete) automated higher-order verification by drawing on the classical work on relatively complete \"Hoare logic like\" program logic for higher-order procedural languages. Then, by adopting the recently proposed techniques for solving constraints over quantified first-order logic formulas, we develop an automated type inference method for the type system, thereby realizing an automated relatively complete verification of higher-order programs.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"55 7 1","pages":"75-86"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2429069.2429081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
We present an automated approach to relatively completely verifying safety (i.e., reachability) property of higher-order functional programs. Our contribution is two-fold. First, we extend the refinement type system framework employed in the recent work on (incomplete) automated higher-order verification by drawing on the classical work on relatively complete "Hoare logic like" program logic for higher-order procedural languages. Then, by adopting the recently proposed techniques for solving constraints over quantified first-order logic formulas, we develop an automated type inference method for the type system, thereby realizing an automated relatively complete verification of higher-order programs.