Electrical Receptacles - Overheating, Arcing, and Melting

M. Benfer, D. Gottuk
{"title":"Electrical Receptacles - Overheating, Arcing, and Melting","authors":"M. Benfer, D. Gottuk","doi":"10.3801/iafss.fss.11-1010","DOIUrl":null,"url":null,"abstract":"This study was designed to experimentally characterize factors that can cause electrical failures (i.e., overheating connections), to assess the damage and potential forensic signatures of these failures, and to characterize the similarities and differences between arcing and melting in receptacle components and wiring. Laboratory testing evaluated the impact of a wide range of variables on the formation of overheating connections in residential duplex receptacles including screw terminal torque, wiring method (back-wired, or side-wired), and primary receptacle materials. A total of 408 trials of receptacles with various terminal connections were tested in the laboratory setting; receptacles were powered for up to 16 months. A small portion of receptacles with loose connections overheated to the point of failure of the receptacle; some including flaming events. Failure events occurred between 5 and 365 days after tests were started. Four hundred and sixty eight (468) receptacles were placed in compartment fire tests and furnace fire tests. These tests were designed to evaluate the persistence after fire exposure of overheating/arcing evidence from failure events (i.e., from potential fire cause events). The fire exposure tests also served to analyze the characteristic traits of arcing and melting damage. The results indicated that only very loose connections (less than 0.339 N-m [3 in-lb]) at moderately high currents (9A or higher) tend to form significant overheating connections and receptacle failures, irrespective of other variables such as receptacle materials and installation. Characteristic indicators of overheating and glowing terminal connections were identified and were found to persist after fire exposure.","PeriodicalId":12145,"journal":{"name":"Fire Safety Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Science","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3801/iafss.fss.11-1010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This study was designed to experimentally characterize factors that can cause electrical failures (i.e., overheating connections), to assess the damage and potential forensic signatures of these failures, and to characterize the similarities and differences between arcing and melting in receptacle components and wiring. Laboratory testing evaluated the impact of a wide range of variables on the formation of overheating connections in residential duplex receptacles including screw terminal torque, wiring method (back-wired, or side-wired), and primary receptacle materials. A total of 408 trials of receptacles with various terminal connections were tested in the laboratory setting; receptacles were powered for up to 16 months. A small portion of receptacles with loose connections overheated to the point of failure of the receptacle; some including flaming events. Failure events occurred between 5 and 365 days after tests were started. Four hundred and sixty eight (468) receptacles were placed in compartment fire tests and furnace fire tests. These tests were designed to evaluate the persistence after fire exposure of overheating/arcing evidence from failure events (i.e., from potential fire cause events). The fire exposure tests also served to analyze the characteristic traits of arcing and melting damage. The results indicated that only very loose connections (less than 0.339 N-m [3 in-lb]) at moderately high currents (9A or higher) tend to form significant overheating connections and receptacle failures, irrespective of other variables such as receptacle materials and installation. Characteristic indicators of overheating and glowing terminal connections were identified and were found to persist after fire exposure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
插座。过热、电弧和熔化
本研究旨在通过实验表征可能导致电气故障的因素(即过热连接),评估这些故障的损坏和潜在的法医特征,并表征插座组件和布线中电弧和熔化之间的异同。实验室测试评估了一系列变量对住宅复式插座中过热连接形成的影响,包括螺旋端子扭矩、接线方法(背接线或侧接线)和主插座材料。在实验室环境中,共有408个不同端子连接的插座试验进行了测试;插座的供电时间长达16个月。一小部分连接松动的插座过热到插座失效点;其中一些包括燃烧事件。故障事件发生在测试启动后的5天到365天之间。468个容器被放置在隔间防火试验和熔炉防火试验中。这些测试旨在评估故障事件(即潜在的火灾原因事件)引起的过热/电弧证据在火灾暴露后的持久性。火灾暴露试验也用于分析电弧和熔化损伤的特征特征。结果表明,在中等高电流(9A或更高)下,只有非常松散的连接(小于0.339 N-m [3 in-lb])才容易形成明显的过热连接和插座故障,而与插座材料和安装等其他变量无关。确定了过热和发光端子连接的特征指标,并发现在火灾暴露后持续存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling the Investigation of Structure Vulnerabilities to Wind- Driven Firebrand Showers in Wildland-Urban Interface (WUI) Fires Modeling of the pyrolysis of plywood exposed to heat fluxes under cone calorimeter Effective stress method to be used in beam finite elements to take local instabilities into account Spectral Aspects of Bench-Scale Flammability Testing: Application to Hardwood Pyrolysis Fundamental flame spread and toxicity evaluation of fire retarded polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1