{"title":"Time and Space as Unpredictable Biological Constructions","authors":"John M. Myers, F. Hadi Madjid","doi":"10.17791/jcs.2018.19.2.165","DOIUrl":null,"url":null,"abstract":"Whatever we can say, we say in rhythms of symbols—e.g., words written as marks on paper. What a mark symbolizes to us or to other agents cannot be predicted on the basis of measurement and calculation. Without admitting any explicit notion of an agent, quantum theory implies a role for an unpredictable symbol-handling agent. To accept agents and symbols into physics is to see mechanisms, especially clocks, not in isolation but as tools that agents build and adjust as needed. We model a symbol-handling agent by combining a modified Turing machine with an adjustable clock, needed to allow communication of symbols from one agent to another. To communicate, agents must adjust their clocks so as to mesh their rhythms of operation. We call this meshing of rhythms logical synchronization and display its features. While symbols are digital, maintaining logical synchronization requires something analog, idiosyncratic, and unpredictable, beyond symbols. Our main claim is that logically synchronized rhythms of symbols need not be seen as taking place in some externally supplied “space and time,” but instead are the raw material out of which physicists construct time, space, and spacetime. We hypothesize that all living organisms employ logically synchronized rhythms of symbols. We invite collaboration to explore, in a variety of contexts for people and other living organisms, the situations involving logical synchronization of rhythms of symbols that differ from those used in physics. Accompanying such initial study, we would like to see the development of mathematical expressions of logical synchronization Journal of Cognitive Science 19-2:165-193, 2018 c2018 Institute for Cognitive Science, Seoul National University 166 John M. Myers, F. Hadi Madjid applicable to more complex cybernetic systems than those we discuss here.","PeriodicalId":43246,"journal":{"name":"Journal of Cognitive Science","volume":"111 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cognitive Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17791/jcs.2018.19.2.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Whatever we can say, we say in rhythms of symbols—e.g., words written as marks on paper. What a mark symbolizes to us or to other agents cannot be predicted on the basis of measurement and calculation. Without admitting any explicit notion of an agent, quantum theory implies a role for an unpredictable symbol-handling agent. To accept agents and symbols into physics is to see mechanisms, especially clocks, not in isolation but as tools that agents build and adjust as needed. We model a symbol-handling agent by combining a modified Turing machine with an adjustable clock, needed to allow communication of symbols from one agent to another. To communicate, agents must adjust their clocks so as to mesh their rhythms of operation. We call this meshing of rhythms logical synchronization and display its features. While symbols are digital, maintaining logical synchronization requires something analog, idiosyncratic, and unpredictable, beyond symbols. Our main claim is that logically synchronized rhythms of symbols need not be seen as taking place in some externally supplied “space and time,” but instead are the raw material out of which physicists construct time, space, and spacetime. We hypothesize that all living organisms employ logically synchronized rhythms of symbols. We invite collaboration to explore, in a variety of contexts for people and other living organisms, the situations involving logical synchronization of rhythms of symbols that differ from those used in physics. Accompanying such initial study, we would like to see the development of mathematical expressions of logical synchronization Journal of Cognitive Science 19-2:165-193, 2018 c2018 Institute for Cognitive Science, Seoul National University 166 John M. Myers, F. Hadi Madjid applicable to more complex cybernetic systems than those we discuss here.
期刊介绍:
Journal of Cognitive Science is an official journal of the International Association for Cognitive Science (IACS, http://ia-cs.org) and published quarterly by the Institute for Cognitive Science at Seoul National University, located in Seoul, Korea. The Association currently consists of member societies of different countries such as Australia, China, Japan, Korea, and European Union. However, paper submission by anyone in the whole world is welcome at any time. Its main concern is to showcase research articles of highest quality and significance within the disciplines of cognitive science, including, but not limited to, philosophy, psychology, linguistics, artificial intelligence, neuroscience, aesthetics, anthropology, and education, insofar as it is deemed to be of interest to those who pursue the study of mind. In particular, we would like to encourage submissions that cross the traditional disciplinary boundaries. The Journal of Cognitive Science (JCS) is published quarterly on 31 March, 30 June, 30 September, 31 December (founded in 2000) as the official journal of International Association for Cognitive Science (IACS) by the Institute for Cognitive Science at Seoul National University. It is a SCOPUS, ESCI, EBSCO, KCI journal. It aims to publish research articles of the highest quality and significance within the disciplines that form cognitive science, including philosophy, psychology, linguistics, artificial intelligence, neuroscience, anthropology, and education for Interdisciplinary Journal. Submissions that cross traditional disciplinary boundaries in either themes or methods are especially encouraged. AI-associated Cognitive Science will be newly reinforced and papers in this area are encouraged to be submitted.