Efficient Large-Scale Trace Checking Using MapReduce

M. Bersani, D. Bianculli, C. Ghezzi, S. Krstic, P. S. Pietro
{"title":"Efficient Large-Scale Trace Checking Using MapReduce","authors":"M. Bersani, D. Bianculli, C. Ghezzi, S. Krstic, P. S. Pietro","doi":"10.1145/2884781.2884832","DOIUrl":null,"url":null,"abstract":"The problem of checking a logged event trace against a temporal logic specification arises in many practical cases. Unfortunately, known algorithms for an expressive logic like MTL (Metric Temporal Logic) do not scale with respect to two crucial dimensions: the length of the trace and the size of the time interval of the formula to be checked. The former issue can be addressed by distributed and parallel trace checking algorithms that can take advantage of modern cloud computing and programming frameworks like MapReduce. Still, the latter issue remains open with current state-of-the-art approaches. In this paper we address this memory scalability issue by proposing a new semantics for MTL, called lazy semantics. This semantics can evaluate temporal formulae and boolean combinations of temporal-only formulae at any arbitrary time instant. We prove that lazy semantics is more expressive than point-based semantics and that it can be used as a basis for a correct parametric decomposition of any MTL formula into an equivalent one with smaller, bounded time intervals. We use lazy semantics to extend our previous distributed trace checking algorithm for MTL. The evaluation shows that the proposed algorithm can check formulae with large intervals, on large traces, in a memory-efficient way.","PeriodicalId":6485,"journal":{"name":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","volume":"134 1","pages":"888-898"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2884781.2884832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The problem of checking a logged event trace against a temporal logic specification arises in many practical cases. Unfortunately, known algorithms for an expressive logic like MTL (Metric Temporal Logic) do not scale with respect to two crucial dimensions: the length of the trace and the size of the time interval of the formula to be checked. The former issue can be addressed by distributed and parallel trace checking algorithms that can take advantage of modern cloud computing and programming frameworks like MapReduce. Still, the latter issue remains open with current state-of-the-art approaches. In this paper we address this memory scalability issue by proposing a new semantics for MTL, called lazy semantics. This semantics can evaluate temporal formulae and boolean combinations of temporal-only formulae at any arbitrary time instant. We prove that lazy semantics is more expressive than point-based semantics and that it can be used as a basis for a correct parametric decomposition of any MTL formula into an equivalent one with smaller, bounded time intervals. We use lazy semantics to extend our previous distributed trace checking algorithm for MTL. The evaluation shows that the proposed algorithm can check formulae with large intervals, on large traces, in a memory-efficient way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用MapReduce的高效大规模跟踪检查
根据时间逻辑规范检查记录的事件跟踪的问题在许多实际情况下都会出现。不幸的是,对于像MTL(度量时态逻辑)这样的表达性逻辑,已知的算法不能根据两个关键维度进行缩放:跟踪的长度和要检查的公式的时间间隔的大小。前一个问题可以通过分布式和并行跟踪检查算法来解决,这些算法可以利用现代云计算和编程框架(如MapReduce)。尽管如此,后一个问题仍然存在于目前最先进的方法中。在本文中,我们通过提出一种新的MTL语义来解决这个内存可伸缩性问题,称为惰性语义。该语义可以在任意时刻计算时间公式和仅时间公式的布尔组合。我们证明了惰性语义比基于点的语义更具表现力,并且它可以作为将任何MTL公式正确参数分解为具有较小有界时间间隔的等效公式的基础。我们使用懒惰语义扩展了之前的MTL分布式跟踪检查算法。计算结果表明,该算法能够在较大的轨迹上对大间隔的公式进行校验,并且具有较高的内存利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Thread Sharing Analysis Overcoming Open Source Project Entry Barriers with a Portal for Newcomers Nomen est Omen: Exploring and Exploiting Similarities between Argument and Parameter Names Reliability of Run-Time Quality-of-Service Evaluation Using Parametric Model Checking On the Techniques We Create, the Tools We Build, and Their Misalignments: A Study of KLEE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1