Dispersal density estimation across scales

M. Hoffmann, Mathias Trabs
{"title":"Dispersal density estimation across scales","authors":"M. Hoffmann, Mathias Trabs","doi":"10.1214/23-aos2290","DOIUrl":null,"url":null,"abstract":"We consider a space structured population model generated by two point clouds: a homogeneous Poisson process $M$ with intensity $n\\to\\infty$ as a model for a parent generation together with a Cox point process $N$ as offspring generation, with conditional intensity given by the convolution of $M$ with a scaled dispersal density $\\sigma^{-1}f(\\cdot/\\sigma)$. Based on a realisation of $M$ and $N$, we study the nonparametric estimation of $f$ and the estimation of the physical scale parameter $\\sigma>0$ simultaneously for all regimes $\\sigma=\\sigma_n$. We establish that the optimal rates of convergence do not depend monotonously on the scale and we construct minimax estimators accordingly whether $\\sigma$ is known or considered as a nuisance, in which case we can estimate it and achieve asymptotic minimaxity by plug-in. The statistical reconstruction exhibits a competition between a direct and a deconvolution problem. Our study reveals in particular the existence of a least favourable intermediate inference scale, a phenomenon that seems to be new.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a space structured population model generated by two point clouds: a homogeneous Poisson process $M$ with intensity $n\to\infty$ as a model for a parent generation together with a Cox point process $N$ as offspring generation, with conditional intensity given by the convolution of $M$ with a scaled dispersal density $\sigma^{-1}f(\cdot/\sigma)$. Based on a realisation of $M$ and $N$, we study the nonparametric estimation of $f$ and the estimation of the physical scale parameter $\sigma>0$ simultaneously for all regimes $\sigma=\sigma_n$. We establish that the optimal rates of convergence do not depend monotonously on the scale and we construct minimax estimators accordingly whether $\sigma$ is known or considered as a nuisance, in which case we can estimate it and achieve asymptotic minimaxity by plug-in. The statistical reconstruction exhibits a competition between a direct and a deconvolution problem. Our study reveals in particular the existence of a least favourable intermediate inference scale, a phenomenon that seems to be new.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨尺度的分散密度估计
我们考虑由两个点云生成的空间结构种群模型:一个强度为$n\to\infty$的均匀泊松过程$M$作为亲代模型,一个Cox点过程$N$作为后代模型,条件强度由$M$与缩放分散密度$\sigma^{-1}f(\cdot/\sigma)$的卷积给出。在实现$M$和$N$的基础上,我们同时研究了所有状态$\sigma=\sigma_n$的$f$的非参数估计和物理尺度参数$\sigma>0$的估计。我们建立了最优收敛速率不单调依赖于尺度,并相应地构造了极大极小估计量,无论$\sigma$是已知的还是被认为是一个累赘,在这种情况下我们可以估计它并通过插件实现渐近极小。统计重建表现出直接问题和反卷积问题之间的竞争。我们的研究特别揭示了最不利的中间推理尺度的存在,这一现象似乎是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM Local Whittle estimation of high-dimensional long-run variance and precision matrices Efficient estimation of the maximal association between multiple predictors and a survival outcome The impacts of unobserved covariates on covariate-adaptive randomized experiments Estimation of expected Euler characteristic curves of nonstationary smooth random fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1