H. Zhang, M. Singh, Fernando Zvietcovich, K. Larin, S. Aglyamov
{"title":"Age-related changes in the viscoelasticity of rabbit lens characterised by surface wave dispersion analysis","authors":"H. Zhang, M. Singh, Fernando Zvietcovich, K. Larin, S. Aglyamov","doi":"10.1070/qel17964","DOIUrl":null,"url":null,"abstract":"The viscoelastic properties of the young and mature rabbit lenses in situ are evaluated using wave-based optical coherence elastography (OCE). Surface waves in the crystalline lens are generated using acoustic radiation force (ARF) focused inside the eyeball. Surface-wave dispersion is measured with a phase-stabilised optical coherence tomography (OCT) system. The Young's modulus and shear viscosity coefficient are quantified based on a Scholte wave model. The results show that both elasticity and viscosity are significantly different between the young and mature lenses. The Young's modulus of the lenses increased with age from 7.74 ± 1.56 kPa (young) to 15.15 ± 4.52 kPa (mature), and the shear viscosity coefficient increased from 0.55 ± 0.04 Pa s (young) and 0.86 ± 0.13 Pa s (mature). It is shown that the combination of ARF excitation, OCE imaging, and dispersion analysis enables nondestructive quantification of lenticular viscoelasticity in situ and shows promise for in vivo applications.","PeriodicalId":20775,"journal":{"name":"Quantum Electronics","volume":"35 1","pages":"42 - 47"},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1070/qel17964","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
The viscoelastic properties of the young and mature rabbit lenses in situ are evaluated using wave-based optical coherence elastography (OCE). Surface waves in the crystalline lens are generated using acoustic radiation force (ARF) focused inside the eyeball. Surface-wave dispersion is measured with a phase-stabilised optical coherence tomography (OCT) system. The Young's modulus and shear viscosity coefficient are quantified based on a Scholte wave model. The results show that both elasticity and viscosity are significantly different between the young and mature lenses. The Young's modulus of the lenses increased with age from 7.74 ± 1.56 kPa (young) to 15.15 ± 4.52 kPa (mature), and the shear viscosity coefficient increased from 0.55 ± 0.04 Pa s (young) and 0.86 ± 0.13 Pa s (mature). It is shown that the combination of ARF excitation, OCE imaging, and dispersion analysis enables nondestructive quantification of lenticular viscoelasticity in situ and shows promise for in vivo applications.
利用基于波的光学相干弹性成像(OCE)对原位幼兔和成熟兔晶状体的粘弹性特性进行了评价。晶状体中的表面波是利用聚焦在眼球内部的声辐射力(ARF)产生的。用相位稳定光学相干层析成像(OCT)系统测量了表面波色散。杨氏模量和剪切粘滞系数是基于一个Scholte波模型的量化。结果表明,新生晶状体和成熟晶状体的弹性和黏度均有显著差异。晶状体的杨氏模量从7.74±1.56 kPa(年轻)增加到15.15±4.52 kPa(成熟),剪切黏度系数从0.55±0.04 Pa s(年轻)增加到0.86±0.13 Pa s(成熟)。研究表明,结合ARF激发、OCE成像和色散分析,可以对透镜体的原位粘弹性进行无损量化,并有望在体内应用。
期刊介绍:
Quantum Electronics covers the following principal headings
Letters
Lasers
Active Media
Interaction of Laser Radiation with Matter
Laser Plasma
Nonlinear Optical Phenomena
Nanotechnologies
Quantum Electronic Devices
Optical Processing of Information
Fiber and Integrated Optics
Laser Applications in Technology and Metrology, Biology and Medicine.