{"title":"A multipitch tracking algorithm for noisy speech","authors":"Mingyang Wu, Deliang Wang, Guy J. Brown","doi":"10.1109/TSA.2003.811539","DOIUrl":null,"url":null,"abstract":"An effective multipitch tracking algorithm for noisy speech is critical for acoustic signal processing. However, the performance of existing algorithms is not satisfactory. We present a robust algorithm for multipitch tracking of noisy speech. Our approach integrates an improved channel and peak selection method, a new method for extracting periodicity information across different channels, and a hidden Markov model (HMM) for forming continuous pitch tracks. The resulting algorithm can reliably track single and double pitch tracks in a noisy environment. We suggest a pitch error measure for the multipitch situation. The proposed algorithm is evaluated on a database of speech utterances mixed with various types of interference. Quantitative comparisons show that our algorithm significantly outperforms existing ones.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"31 1","pages":"229-241"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"304","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.811539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 304
Abstract
An effective multipitch tracking algorithm for noisy speech is critical for acoustic signal processing. However, the performance of existing algorithms is not satisfactory. We present a robust algorithm for multipitch tracking of noisy speech. Our approach integrates an improved channel and peak selection method, a new method for extracting periodicity information across different channels, and a hidden Markov model (HMM) for forming continuous pitch tracks. The resulting algorithm can reliably track single and double pitch tracks in a noisy environment. We suggest a pitch error measure for the multipitch situation. The proposed algorithm is evaluated on a database of speech utterances mixed with various types of interference. Quantitative comparisons show that our algorithm significantly outperforms existing ones.