{"title":"Internal carburization and scale formation on austenitic steels in supercritical carbon dioxide","authors":"B. Pint, Y. F. Su, M. Lance, R. Pillai, J. Keiser","doi":"10.1080/09603409.2023.2219875","DOIUrl":null,"url":null,"abstract":"ABSTRACT Direct-fired supercritical CO2 (sCO2) power cycles are being commercialised to revolutionise fossil energy as a low-emission power source. To lower the cost of this technology, less expensive steels are needed in the lower temperature segments of the cycle. However, there are concerns about internal carburisation of steels in sCO2. 1 A consistent observation is that thin, Cr-rich oxides appear to reduce C ingress compared to thick Fe-rich oxides formed on 9–12% Cr ferritic-martensitic steels. Advanced austenitic stainless steels (SS) like alloy 709 (20Cr-25Ni) are able to continue to form Cr-rich oxides at 650°C, while a conventional type 316 H SS formed a Fe-rich scale. The C diffusion profiles in SS specimens were quantified at 550°C–650°C using glow discharge optical emission spectroscopy and electron probe microanalysis. Analytical transmission electron microscopy was used to compare the thin protective Cr-rich oxide formed on alloy 709 in sCO2 at 650°C to that formed in ambient air.","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":"27 1","pages":"308 - 317"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials at High Temperatures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09603409.2023.2219875","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Direct-fired supercritical CO2 (sCO2) power cycles are being commercialised to revolutionise fossil energy as a low-emission power source. To lower the cost of this technology, less expensive steels are needed in the lower temperature segments of the cycle. However, there are concerns about internal carburisation of steels in sCO2. 1 A consistent observation is that thin, Cr-rich oxides appear to reduce C ingress compared to thick Fe-rich oxides formed on 9–12% Cr ferritic-martensitic steels. Advanced austenitic stainless steels (SS) like alloy 709 (20Cr-25Ni) are able to continue to form Cr-rich oxides at 650°C, while a conventional type 316 H SS formed a Fe-rich scale. The C diffusion profiles in SS specimens were quantified at 550°C–650°C using glow discharge optical emission spectroscopy and electron probe microanalysis. Analytical transmission electron microscopy was used to compare the thin protective Cr-rich oxide formed on alloy 709 in sCO2 at 650°C to that formed in ambient air.
期刊介绍:
Materials at High Temperatures welcomes contributions relating to high temperature applications in the energy generation, aerospace, chemical and process industries. The effects of high temperatures and extreme environments on the corrosion and oxidation, fatigue, creep, strength and wear of metallic alloys, ceramics, intermetallics, and refractory and composite materials relative to these industries are covered.
Papers on the modelling of behaviour and life prediction are also welcome, provided these are validated by experimental data and explicitly linked to actual or potential applications. Contributions addressing the needs of designers and engineers (e.g. standards and codes of practice) relative to the areas of interest of this journal also fall within the scope. The term ''high temperatures'' refers to the subsequent temperatures of application and not, for example, to those of processing itself.
Materials at High Temperatures publishes regular thematic issues on topics of current interest. Proposals for issues are welcomed; please contact one of the Editors with details.